Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Evaluate the following expression:
$4\left( {{\sin }^{4}}30+{{\cos }^{4}}60 \right)-\dfrac{2}{3}\left( {{\sin }^{2}}60-{{\cos }^{2}}45 \right)+\dfrac{{{\tan }^{2}}60}{2}$

Answer
VerifiedVerified
509.4k+ views
Hint:We will solve this question by replacing the value of $\sin 30=\cos 60=\dfrac{1}{2}$ , $\cos 45=\dfrac{1}{\sqrt{2}}$ , $\sin 60=\dfrac{\sqrt{3}}{2}$ and $\tan 60=\sqrt{3}$ . And then we will solve the expression that we get after replacing the value in $4\left( {{\sin }^{4}}30+{{\cos }^{4}}60 \right)-\dfrac{2}{3}\left( {{\sin }^{2}}60-{{\cos }^{2}}45 \right)+\dfrac{{{\tan }^{2}}60}{2}$, and then we will perform some algebraic operation and simplify the given expression.


Complete step-by-step answer:
First we will write the given expression and then we will substitute the values in that expression that are known to us.
In the given expression $4\left( {{\sin }^{4}}30+{{\cos }^{4}}60 \right)-\dfrac{2}{3}\left( {{\sin }^{2}}60-{{\cos }^{2}}45 \right)+\dfrac{{{\tan }^{2}}60}{2}$, we will substitute the value $\sin 30=\cos 60=\dfrac{1}{2}$ , $\cos 45=\dfrac{1}{\sqrt{2}}$ , $\sin 60=\dfrac{\sqrt{3}}{2}$ and $\tan 60=\sqrt{3}$ .
Hence, after substituting we get the expression as,
$\begin{align}
  & =4\left( {{\left( \dfrac{1}{2} \right)}^{4}}+{{\left( \dfrac{1}{2} \right)}^{4}} \right)-\dfrac{2}{3}\left( {{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}-{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}} \right)+\dfrac{{{\left( \sqrt{3} \right)}^{2}}}{2} \\
 & =4\left( \left( \dfrac{1}{16} \right)+\left( \dfrac{1}{16} \right) \right)-\dfrac{2}{3}\left( \left( \dfrac{3}{4} \right)-\left( \dfrac{1}{2} \right) \right)+\dfrac{3}{2} \\
 & =4\left( \dfrac{1}{8} \right)-\dfrac{2}{3}\left( \dfrac{1}{4} \right)+\dfrac{3}{2} \\
 & =2-\dfrac{1}{6} \\
 & =\dfrac{11}{6} \\
\end{align}$
Hence, after solving the expression we get the value as $\dfrac{11}{6}$ .

Note: To solve this question we have used known values $\sin 30=\cos 60=\dfrac{1}{2}$ , $\cos 45=\dfrac{1}{\sqrt{2}}$ , $\sin 60=\dfrac{\sqrt{3}}{2}$ and $\tan 60=\sqrt{3}$ , and that values must be known to student also. One can also use some trigonometric and algebraic formula to simplify the given expression first and the substitute the value in that simplified expression to get the final answer, in both the case the answer will be same but in the second method we have reduced the amount of calculation so it can be a better option to reduce the chance of making mistakes.