
Evaluate the following: \[\dfrac{\sin {{30}^{\circ }}+\tan {{45}^{\circ }}-cosec{{60}^{\circ }}}{\sec {{30}^{\circ }}+cos{{60}^{\circ }}+\cot {{45}^{\circ }}}\].
Answer
609.6k+ views
Hint: We will use the trigonometric ratio table and find out the values of trigonometric ratios as follows:
\[\sin {{30}^{\circ }}=\dfrac{1}{2},tan{{45}^{\circ }}=1,cosec{{60}^{\circ }}=\dfrac{2}{\sqrt{3}},\sec {{30}^{\circ }}=\dfrac{2}{\sqrt{3}},\cos {{60}^{\circ }}=\dfrac{1}{2},\cot {{45}^{\circ }}=1\]
Then we will substitute the values of those trigonometric ratios in the equation given in the equation and simplify to get the answer.
Complete step-by-step answer:
We have been given the expression \[\dfrac{\sin {{30}^{\circ }}+\tan {{45}^{\circ }}-cosec{{60}^{\circ }}}{\sec {{30}^{\circ }}+cos{{60}^{\circ }}+\cot {{45}^{\circ }}}\].
We can refer to the following table for finding the value of trigonometric functions at standard angles.
Referring to the table above, we can see that \[\sin {{30}^{\circ }}=\dfrac{1}{2},tan{{45}^{\circ }}=1,cosec{{60}^{\circ }}=\dfrac{2}{\sqrt{3}},\sec {{30}^{\circ }}=\dfrac{2}{\sqrt{3}},\cos {{60}^{\circ }}=\dfrac{1}{2},\cot {{45}^{\circ }}=1\].
So by substituting these values in the equation given in the question, we get as follows:
\[ \Rightarrow \dfrac{\sin {{30}^{\circ }}+\tan {{45}^{\circ }}-cosec{{60}^{\circ }}}{\sec {{30}^{\circ }}+cos{{60}^{\circ }}+\cot {{45}^{\circ }}} \]
\[ \Rightarrow \dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{1}{2}+1} \]
\[ \Rightarrow \dfrac{\dfrac{1+2}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{1+2}{2}} \]
\[ \Rightarrow \dfrac{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{3}{2}} \]
On multiplying the numerator as well as the denominator by \[\left( \dfrac{3}{2}-\dfrac{2}{\sqrt{3}} \right)\] in order to rationalize the denominator, we get as follows:
\[ \Rightarrow \dfrac{\sin {{30}^{\circ }}+\tan {{45}^{\circ }}-cosec{{60}^{\circ }}}{\sec {{30}^{\circ }}+cos{{60}^{\circ }}+\cot {{45}^{\circ }}} \]
\[\sin {{30}^{\circ }}=\dfrac{1}{2},tan{{45}^{\circ }}=1,cosec{{60}^{\circ }}=\dfrac{2}{\sqrt{3}},\sec {{30}^{\circ }}=\dfrac{2}{\sqrt{3}},\cos {{60}^{\circ }}=\dfrac{1}{2},\cot {{45}^{\circ }}=1\]
Then we will substitute the values of those trigonometric ratios in the equation given in the equation and simplify to get the answer.
Complete step-by-step answer:
We have been given the expression \[\dfrac{\sin {{30}^{\circ }}+\tan {{45}^{\circ }}-cosec{{60}^{\circ }}}{\sec {{30}^{\circ }}+cos{{60}^{\circ }}+\cot {{45}^{\circ }}}\].
We can refer to the following table for finding the value of trigonometric functions at standard angles.
| Ratio/Angle\[\theta \] | \[{{0}^{\circ }}\] | \[{{30}^{\circ }}\] | \[{{45}^{\circ }}\] | \[{{60}^{\circ }}\] | \[{{90}^{\circ }}\] |
| \[\sin \theta \] | 0 | \[\dfrac{1}{2}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{\sqrt{3}}{2}\] | 1 |
| \[\cos \theta \] | 1 | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{2}\] | 0 |
| \[tan\theta \] | 0 | \[\dfrac{1}{\sqrt{3}}\] | 1 | \[\sqrt{3}\] | Not defined |
| \[cosec\theta \] | Not defined | 2 | \[\sqrt{2}\] | \[\dfrac{2}{\sqrt{3}}\] | 1 |
| \[\sec \theta \] | 1 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{2}\] | 2 | Not defined |
| \[\cot \theta \] | Not defined | \[\sqrt{3}\] | 1 | \[\dfrac{1}{\sqrt{3}}\] | 0 |
So by substituting these values in the equation given in the question, we get as follows:
\[ \Rightarrow \dfrac{\sin {{30}^{\circ }}+\tan {{45}^{\circ }}-cosec{{60}^{\circ }}}{\sec {{30}^{\circ }}+cos{{60}^{\circ }}+\cot {{45}^{\circ }}} \]
\[ \Rightarrow \dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{1}{2}+1} \]
\[ \Rightarrow \dfrac{\dfrac{1+2}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{1+2}{2}} \]
\[ \Rightarrow \dfrac{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{3}{2}} \]
On multiplying the numerator as well as the denominator by \[\left( \dfrac{3}{2}-\dfrac{2}{\sqrt{3}} \right)\] in order to rationalize the denominator, we get as follows:
\[ \Rightarrow \dfrac{\sin {{30}^{\circ }}+\tan {{45}^{\circ }}-cosec{{60}^{\circ }}}{\sec {{30}^{\circ }}+cos{{60}^{\circ }}+\cot {{45}^{\circ }}} \]
\[ \Rightarrow \dfrac{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}\times \left( \dfrac{3}{2}-\dfrac{2}{\sqrt{3}} \right)}{\dfrac{3}{2}+\dfrac{2}{\sqrt{3}}\times \left( \dfrac{3}{2}-\dfrac{2}{\sqrt{3}} \right)} \]
Since we know the trigonometric identity \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\], we apply it in the equation and get as follows:
\[\Rightarrow \dfrac{{{\left( \dfrac{3}{2}-\dfrac{2}{\sqrt{3}} \right)}^{2}}}{{{\left( \dfrac{3}{2} \right)}^{2}}-{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{\left( \dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}-2\times \dfrac{3}{2}\times \dfrac{2}{\sqrt{3}}}{\dfrac{9}{4}-\dfrac{4}{3}}\]
On taking LCM of 3 and 4, we get as follows:
\[ \Rightarrow \dfrac{\dfrac{9}{4}+\dfrac{4}{3}-\dfrac{6}{\sqrt{3}}}{\dfrac{27-16}{12}} \]
\[ \Rightarrow \dfrac{\dfrac{27+16}{12}-\dfrac{6\times \sqrt{3}}{\sqrt{3}\times \sqrt{3}}}{\dfrac{11}{12}} \]
\[ \Rightarrow \dfrac{\dfrac{43}{12}-\dfrac{6\sqrt{3}}{3}}{\dfrac{11}{12}} \]
Taking LCM of 12 and 3, we get as follows:
\[ \Rightarrow \dfrac{\dfrac{43-24\sqrt{3}}{12}}{\dfrac{11}{12}} \]
\[ \Rightarrow \dfrac{\left( 43-24\sqrt{3} \right)\times 12}{12\times 11} \]
\[ \Rightarrow \dfrac{43-24\sqrt{3}}{11} \]
Therefore, the required value of the given expression is \[\dfrac{43-24\sqrt{3}}{11}\].
Note: Don’t get confused while substituting the value of trigonometric ratios in the given expression. Also, be careful while calculating and take care of the signs. In this type of question, you must have to remember the trigonometric ratio table so that we can easily substitute any values. We can convert all the values in terms of sin and cos because so many students remember only these formulas.
Since we know the trigonometric identity \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\], we apply it in the equation and get as follows:
\[\Rightarrow \dfrac{{{\left( \dfrac{3}{2}-\dfrac{2}{\sqrt{3}} \right)}^{2}}}{{{\left( \dfrac{3}{2} \right)}^{2}}-{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{\left( \dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}-2\times \dfrac{3}{2}\times \dfrac{2}{\sqrt{3}}}{\dfrac{9}{4}-\dfrac{4}{3}}\]
On taking LCM of 3 and 4, we get as follows:
\[ \Rightarrow \dfrac{\dfrac{9}{4}+\dfrac{4}{3}-\dfrac{6}{\sqrt{3}}}{\dfrac{27-16}{12}} \]
\[ \Rightarrow \dfrac{\dfrac{27+16}{12}-\dfrac{6\times \sqrt{3}}{\sqrt{3}\times \sqrt{3}}}{\dfrac{11}{12}} \]
\[ \Rightarrow \dfrac{\dfrac{43}{12}-\dfrac{6\sqrt{3}}{3}}{\dfrac{11}{12}} \]
Taking LCM of 12 and 3, we get as follows:
\[ \Rightarrow \dfrac{\dfrac{43-24\sqrt{3}}{12}}{\dfrac{11}{12}} \]
\[ \Rightarrow \dfrac{\left( 43-24\sqrt{3} \right)\times 12}{12\times 11} \]
\[ \Rightarrow \dfrac{43-24\sqrt{3}}{11} \]
Therefore, the required value of the given expression is \[\dfrac{43-24\sqrt{3}}{11}\].
Note: Don’t get confused while substituting the value of trigonometric ratios in the given expression. Also, be careful while calculating and take care of the signs. In this type of question, you must have to remember the trigonometric ratio table so that we can easily substitute any values. We can convert all the values in terms of sin and cos because so many students remember only these formulas.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

