
Evaluate the following determinant
$\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$
Answer
615.3k+ views
Hint: For evaluating the given determinant, we can apply row or column operations to make the expansion easier.
Complete step-by-step answer:
$ \Rightarrow $ Let $\vartriangle = $ $\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$
Now, here we will apply row operations for solving the above determinant.
Now, applying row operation in ${R_2}$
$ \Rightarrow {R_2} \to {R_2} - {R_1}$
\[ \Rightarrow \vartriangle = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{b - a}&{ca - bc} \\
1&c&{ab}
\end{array}} \right|\]
Now, applying row operation in R3
$ \Rightarrow {R_3} \to {R_3} - {R_1}$
\[ \Rightarrow \vartriangle = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{b - a}&{ca - bc} \\
0&{c - a}&{ab - bc}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{b - a}&{c\left( {a - b} \right)} \\
0&{c - a}&{b\left( {a - c} \right)}
\end{array}} \right|\]
Now, for making the expansion easy we can take common terms out from the determinant. So taking (a – b) and (a – c) common from ${R_2}$ and ${R_3}$ respectively, we get,
\[ \Rightarrow \vartriangle = \left( {a - b} \right)\left( {a - c} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{ - 1}&c \\
0&{ - 1}&b
\end{array}} \right|\]
Now we can expand the determinant along any row or column.
So, here it is better to expand the above determinant along the first column as two elements of the first column are 0. So, it will make our calculations easier.
So, expanding along first column, we get,
\[ \Rightarrow \vartriangle = \left( {a - b} \right)\left( {a - c} \right)\left| {\begin{array}{*{20}{c}}
{ - 1}&c \\
{ - 1}&b
\end{array}} \right| = \left( {a - b} \right)\left( {a - c} \right)\left( { - b + c} \right)\]
$ \Rightarrow $ Hence $\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right| = \vartriangle = \left( {a - b} \right)\left( {a - c} \right)\left( {c - b} \right)$
Note: Whenever we come up with these types of problems, to make calculations easy, first reduce the determinant by applying row or column operations then expand it. Take care of the signs while carrying out expansions. It is better to expand along a row or column with most 0’s.
Complete step-by-step answer:
$ \Rightarrow $ Let $\vartriangle = $ $\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$
Now, here we will apply row operations for solving the above determinant.
Now, applying row operation in ${R_2}$
$ \Rightarrow {R_2} \to {R_2} - {R_1}$
\[ \Rightarrow \vartriangle = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{b - a}&{ca - bc} \\
1&c&{ab}
\end{array}} \right|\]
Now, applying row operation in R3
$ \Rightarrow {R_3} \to {R_3} - {R_1}$
\[ \Rightarrow \vartriangle = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{b - a}&{ca - bc} \\
0&{c - a}&{ab - bc}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{b - a}&{c\left( {a - b} \right)} \\
0&{c - a}&{b\left( {a - c} \right)}
\end{array}} \right|\]
Now, for making the expansion easy we can take common terms out from the determinant. So taking (a – b) and (a – c) common from ${R_2}$ and ${R_3}$ respectively, we get,
\[ \Rightarrow \vartriangle = \left( {a - b} \right)\left( {a - c} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{ - 1}&c \\
0&{ - 1}&b
\end{array}} \right|\]
Now we can expand the determinant along any row or column.
So, here it is better to expand the above determinant along the first column as two elements of the first column are 0. So, it will make our calculations easier.
So, expanding along first column, we get,
\[ \Rightarrow \vartriangle = \left( {a - b} \right)\left( {a - c} \right)\left| {\begin{array}{*{20}{c}}
{ - 1}&c \\
{ - 1}&b
\end{array}} \right| = \left( {a - b} \right)\left( {a - c} \right)\left( { - b + c} \right)\]
$ \Rightarrow $ Hence $\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right| = \vartriangle = \left( {a - b} \right)\left( {a - c} \right)\left( {c - b} \right)$
Note: Whenever we come up with these types of problems, to make calculations easy, first reduce the determinant by applying row or column operations then expand it. Take care of the signs while carrying out expansions. It is better to expand along a row or column with most 0’s.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

