
Evaluate the following:
\[4{{a}^{2}}{{\sin }^{2}}\left( \dfrac{3\pi }{4} \right)-3{{\left[ a\tan {{225}^{\circ }} \right]}^{2}}+{{\left[ 2a\cos {{315}^{\circ }} \right]}^{2}}=\]
\[\left( a \right)0\]
\[\left( b \right)a\]
\[\left( c \right)\sqrt{2a}\]
\[\left( d \right){{a}^{2}}\]
Answer
508.2k+ views
Hint: We start by simplifying each of the trigonometric ratios. Firstly, we will simplify \[\sin \left( \dfrac{3\pi }{4} \right)\] using \[\sin \left( \pi -\theta \right)=\sin \theta .\] Then to simplify for \[{{225}^{\circ }}\] we will use \[\tan \left( {{270}^{\circ }}-\theta \right)=\cot \theta \] and then we will use \[\cos \left( {{360}^{\circ }}-\theta \right)=\cos \theta \] to simplify \[\cos {{315}^{\circ }}.\] Then we will put the value of these ratios in the original equation and then simplify to get the required solution.
Complete step-by-step answer:
We are asked to find the value of \[4{{a}^{2}}{{\sin }^{2}}\left( \dfrac{3\pi }{4} \right)-3{{\left[ a\tan {{225}^{\circ }} \right]}^{2}}+{{\left[ 2a\cos {{315}^{\circ }} \right]}^{2}}.\] To solve this, we have to go through some simplification. We know that,
\[\sin \left( \pi -\theta \right)=\sin \theta \]
So, we can write \[\sin \left( \dfrac{3\pi }{4} \right)=\sin \left( \pi -\dfrac{\pi }{4} \right)\]
This can be simplified using \[\sin \left( \pi -\theta \right)=\sin \theta .\] Using \[\theta =\dfrac{\pi }{4}\] as \[\sin \left( \dfrac{\pi }{4} \right)\] we get,
\[\sin \left( \dfrac{3\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)\]
We know that, \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.\]
So,
\[\sin \dfrac{3\pi }{4}=\dfrac{1}{\sqrt{2}}.......\left( i \right)\]
Now, we have \[\tan {{225}^{\circ }}\] which can be written as,
\[\tan \left( {{225}^{\circ }} \right)=\tan \left( {{270}^{\circ }}-{{45}^{\circ }} \right)\]
Now, we can use the above formula, we will get,
\[\tan \left( {{270}^{\circ }}-{{45}^{\circ }} \right)=\cot \left( {{45}^{\circ }} \right)\]
Now, as \[\cot {{45}^{\circ }}=1,\] we get,
\[\tan {{225}^{\circ }}=1......\left( ii \right)\]
We also have that \[\cos \left( {{360}^{\circ }}-\theta \right)\] is given as \[\cos \theta .\] So as we have \[\cos {{315}^{\circ }},\] this can be written as
\[\cos \left( {{315}^{\circ }} \right)=\cos \left( {{360}^{\circ }}-{{45}^{\circ }} \right)\]
So, using the above formula, \[\cos \left( {{360}^{\circ }}-\theta \right)=\cos \theta \] on \[\cos {{315}^{\circ }},\] we get,
\[\cos \left( {{315}^{\circ }} \right)=\cos \left( {{360}^{\circ }}-{{45}^{\circ }} \right)\]
\[\Rightarrow \cos \left( {{315}^{\circ }} \right)=\cos \left( {{45}^{\circ }} \right)\]
As we know that,
\[\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}\]
So, we get,
\[\cos {{315}^{\circ }}=\dfrac{1}{\sqrt{2}}.....\left( iii \right)\]
Now, we use the value of (i), (ii) and (iii) on \[4{{a}^{2}}{{\sin }^{2}}\left( \dfrac{3\pi }{4} \right)-3{{\left[ a\tan {{225}^{\circ }} \right]}^{2}}+{{\left[ 2a\cos {{315}^{\circ }} \right]}^{2}}.\] We will get,
\[4\times {{a}^{2}}{{\sin }^{2}}\left( \dfrac{3\pi }{4} \right)-3{{\left[ a\tan {{225}^{\circ }} \right]}^{2}}+{{\left[ 2a\cos {{315}^{\circ }} \right]}^{2}}\]
On simplifying, we will get,
\[\Rightarrow 2{{a}^{2}}-3{{a}^{2}}+{{\left( \sqrt{2}a \right)}^{2}}\]
\[\Rightarrow 2{{a}^{2}}-3{{a}^{2}}+2{{a}^{2}}\]
\[\Rightarrow {{a}^{2}}\]
So, we get the value of \[4{{a}^{2}}{{\sin }^{2}}\left( \dfrac{3\pi }{4} \right)-3{{\left[ a\tan {{225}^{\circ }} \right]}^{2}}+{{\left[ 2a\cos {{315}^{\circ }} \right]}^{2}}\] as \[{{a}^{2}}.\]
So, the correct answer is “Option d”.
Note: Remember that any trigonometry ratio remains as original ratio when we add or subtract angle theta from multiple of 180 and any trigonometry ratio changes to its alternate if we add or subtract from \[{{90}^{\circ }}\] or \[{{270}^{\circ }}\] angle. Also, remember that 2 is made up of two \[\left( \sqrt{2} \right).\] So, \[2a\times \dfrac{1}{\sqrt{2}}\] can be written as \[\sqrt{2}\times \sqrt{2}\times a\times \dfrac{1}{\sqrt{2}}.\] So, after simplification, we get \[\sqrt{2}a.\]
Complete step-by-step answer:
We are asked to find the value of \[4{{a}^{2}}{{\sin }^{2}}\left( \dfrac{3\pi }{4} \right)-3{{\left[ a\tan {{225}^{\circ }} \right]}^{2}}+{{\left[ 2a\cos {{315}^{\circ }} \right]}^{2}}.\] To solve this, we have to go through some simplification. We know that,
\[\sin \left( \pi -\theta \right)=\sin \theta \]
So, we can write \[\sin \left( \dfrac{3\pi }{4} \right)=\sin \left( \pi -\dfrac{\pi }{4} \right)\]
This can be simplified using \[\sin \left( \pi -\theta \right)=\sin \theta .\] Using \[\theta =\dfrac{\pi }{4}\] as \[\sin \left( \dfrac{\pi }{4} \right)\] we get,
\[\sin \left( \dfrac{3\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)\]
We know that, \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.\]
So,
\[\sin \dfrac{3\pi }{4}=\dfrac{1}{\sqrt{2}}.......\left( i \right)\]
Now, we have \[\tan {{225}^{\circ }}\] which can be written as,
\[\tan \left( {{225}^{\circ }} \right)=\tan \left( {{270}^{\circ }}-{{45}^{\circ }} \right)\]
Now, we can use the above formula, we will get,
\[\tan \left( {{270}^{\circ }}-{{45}^{\circ }} \right)=\cot \left( {{45}^{\circ }} \right)\]
Now, as \[\cot {{45}^{\circ }}=1,\] we get,
\[\tan {{225}^{\circ }}=1......\left( ii \right)\]
We also have that \[\cos \left( {{360}^{\circ }}-\theta \right)\] is given as \[\cos \theta .\] So as we have \[\cos {{315}^{\circ }},\] this can be written as
\[\cos \left( {{315}^{\circ }} \right)=\cos \left( {{360}^{\circ }}-{{45}^{\circ }} \right)\]
So, using the above formula, \[\cos \left( {{360}^{\circ }}-\theta \right)=\cos \theta \] on \[\cos {{315}^{\circ }},\] we get,
\[\cos \left( {{315}^{\circ }} \right)=\cos \left( {{360}^{\circ }}-{{45}^{\circ }} \right)\]
\[\Rightarrow \cos \left( {{315}^{\circ }} \right)=\cos \left( {{45}^{\circ }} \right)\]
As we know that,
\[\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}\]
So, we get,
\[\cos {{315}^{\circ }}=\dfrac{1}{\sqrt{2}}.....\left( iii \right)\]
Now, we use the value of (i), (ii) and (iii) on \[4{{a}^{2}}{{\sin }^{2}}\left( \dfrac{3\pi }{4} \right)-3{{\left[ a\tan {{225}^{\circ }} \right]}^{2}}+{{\left[ 2a\cos {{315}^{\circ }} \right]}^{2}}.\] We will get,
\[4\times {{a}^{2}}{{\sin }^{2}}\left( \dfrac{3\pi }{4} \right)-3{{\left[ a\tan {{225}^{\circ }} \right]}^{2}}+{{\left[ 2a\cos {{315}^{\circ }} \right]}^{2}}\]
On simplifying, we will get,
\[\Rightarrow 2{{a}^{2}}-3{{a}^{2}}+{{\left( \sqrt{2}a \right)}^{2}}\]
\[\Rightarrow 2{{a}^{2}}-3{{a}^{2}}+2{{a}^{2}}\]
\[\Rightarrow {{a}^{2}}\]
So, we get the value of \[4{{a}^{2}}{{\sin }^{2}}\left( \dfrac{3\pi }{4} \right)-3{{\left[ a\tan {{225}^{\circ }} \right]}^{2}}+{{\left[ 2a\cos {{315}^{\circ }} \right]}^{2}}\] as \[{{a}^{2}}.\]
So, the correct answer is “Option d”.
Note: Remember that any trigonometry ratio remains as original ratio when we add or subtract angle theta from multiple of 180 and any trigonometry ratio changes to its alternate if we add or subtract from \[{{90}^{\circ }}\] or \[{{270}^{\circ }}\] angle. Also, remember that 2 is made up of two \[\left( \sqrt{2} \right).\] So, \[2a\times \dfrac{1}{\sqrt{2}}\] can be written as \[\sqrt{2}\times \sqrt{2}\times a\times \dfrac{1}{\sqrt{2}}.\] So, after simplification, we get \[\sqrt{2}a.\]
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
