
Evaluate the expression$\int\limits_{2}^{3}{\dfrac{dx}{1-{{x}^{2}}}}$
a) $\dfrac{1}{2}\log \left( \dfrac{2}{3} \right)$
b)$2\log \left( \dfrac{2}{3} \right)$
c)$\dfrac{\pi }{3}$
d)$\dfrac{\pi }{2}$
Answer
607.8k+ views
Hint: Apply partial fraction decomposition to the given integral and simplify. Then apply \[\int{\dfrac{1}{u}=\log u}\] and integrate, then apply $\log \dfrac{a}{b}=\log a-\log b$ to simplify the answer.
Complete step-by-step answer:
The given expression is $\int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}.dx$.
This can be written as,
$\int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\int\limits_{2}^{3}{\dfrac{1}{(1-x)(1+x)}}dx......(i)
$
Now we will apply partial fraction decomposition, so
$\dfrac{1}{(1-x)(1+x)}=\dfrac{A}{(1-x)}+\dfrac{B}{(1+x)}.........(ii)$
This can be written as,
$1=A(1+x)+B(1-x)$
Substituting \[(x=1)\], we get
$\begin{align}
& 1=A(1+1)+B(1-1) \\
& \Rightarrow 1=2A \\
& \Rightarrow A=\dfrac{1}{2} \\
\end{align}$
Substituting \[(x=-1)\], we get
$\begin{align}
& 1=A(1-1)+B(1+1) \\
& \Rightarrow 1=2B \\
& \Rightarrow B=\dfrac{1}{2} \\
\end{align}$
Substituting the values of ‘A’ and ‘B’ in equation (ii), we get
$\begin{align}
& \dfrac{1}{(1-x)(1+x)}=\dfrac{\dfrac{1}{2}}{(1-x)}+\dfrac{\dfrac{1}{2}}{(1+x)} \\
& \Rightarrow \dfrac{1}{(1-x)(1+x)}=\dfrac{1}{2}\left[ \dfrac{1}{(1-x)}+\dfrac{1}{(1+x)} \right] \\
\end{align}$
Substituting this value in equation (i), we get
$\begin{align}
& \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\int\limits_{2}^{3}{\dfrac{1}{2}\left[ \dfrac{1}{(1-x)}+\dfrac{1}{(1+x)} \right]}dx \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \int\limits_{2}^{3}{\dfrac{1}{(1-x)}}dx+\int\limits_{2}^{3}{\dfrac{1}{(1+x)}}dx \right] \\
\end{align}$
Let \[u=1-x\Rightarrow du=-dx,v=1+x\Rightarrow dv=dx\] , so the above equation becomes,
$\Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \int\limits_{2}^{3}{\dfrac{1}{u}}(-du)+\int\limits_{2}^{3}{\dfrac{1}{v}}dv \right]$
We know, \[\int{\dfrac{1}{u}=\log u}\] , so above equation becomes,
$\Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ -\log u+\log v \right]_{2}^{3}$
Substituting back the values of ‘u’ and ‘v’, we get
$\begin{align}
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ -\log (1-x)+\log (1+x) \right]_{2}^{3} \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log (1+x)-\log (1-x) \right]_{2}^{3} \\
\end{align}$
We know, $\log \dfrac{a}{b}=\log a-\log b$ , so above equation becomes,
$\Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\log \left[ \dfrac{(1+x)}{(1-x)} \right]_{2}^{3}$
Applying the upper and lower bounds, we get
$\begin{align}
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log \dfrac{(1+3)}{(1-3)}-\log \dfrac{(1+2)}{(1-2)} \right] \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log \dfrac{4}{2}-\log \dfrac{3}{1} \right] \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log 2-\log 3 \right] \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log \dfrac{2}{3} \right] \\
\end{align}$
Hence the correct answer is option(a).
Note: The possible mistake is instead of solving by partial fraction decomposition, students consider the formula of $\int{\dfrac{1}{1-{{x}^{2}}}.dx}$.
This will lead to totally different and wrong answers.
Complete step-by-step answer:
The given expression is $\int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}.dx$.
This can be written as,
$\int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\int\limits_{2}^{3}{\dfrac{1}{(1-x)(1+x)}}dx......(i)
$
Now we will apply partial fraction decomposition, so
$\dfrac{1}{(1-x)(1+x)}=\dfrac{A}{(1-x)}+\dfrac{B}{(1+x)}.........(ii)$
This can be written as,
$1=A(1+x)+B(1-x)$
Substituting \[(x=1)\], we get
$\begin{align}
& 1=A(1+1)+B(1-1) \\
& \Rightarrow 1=2A \\
& \Rightarrow A=\dfrac{1}{2} \\
\end{align}$
Substituting \[(x=-1)\], we get
$\begin{align}
& 1=A(1-1)+B(1+1) \\
& \Rightarrow 1=2B \\
& \Rightarrow B=\dfrac{1}{2} \\
\end{align}$
Substituting the values of ‘A’ and ‘B’ in equation (ii), we get
$\begin{align}
& \dfrac{1}{(1-x)(1+x)}=\dfrac{\dfrac{1}{2}}{(1-x)}+\dfrac{\dfrac{1}{2}}{(1+x)} \\
& \Rightarrow \dfrac{1}{(1-x)(1+x)}=\dfrac{1}{2}\left[ \dfrac{1}{(1-x)}+\dfrac{1}{(1+x)} \right] \\
\end{align}$
Substituting this value in equation (i), we get
$\begin{align}
& \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\int\limits_{2}^{3}{\dfrac{1}{2}\left[ \dfrac{1}{(1-x)}+\dfrac{1}{(1+x)} \right]}dx \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \int\limits_{2}^{3}{\dfrac{1}{(1-x)}}dx+\int\limits_{2}^{3}{\dfrac{1}{(1+x)}}dx \right] \\
\end{align}$
Let \[u=1-x\Rightarrow du=-dx,v=1+x\Rightarrow dv=dx\] , so the above equation becomes,
$\Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \int\limits_{2}^{3}{\dfrac{1}{u}}(-du)+\int\limits_{2}^{3}{\dfrac{1}{v}}dv \right]$
We know, \[\int{\dfrac{1}{u}=\log u}\] , so above equation becomes,
$\Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ -\log u+\log v \right]_{2}^{3}$
Substituting back the values of ‘u’ and ‘v’, we get
$\begin{align}
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ -\log (1-x)+\log (1+x) \right]_{2}^{3} \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log (1+x)-\log (1-x) \right]_{2}^{3} \\
\end{align}$
We know, $\log \dfrac{a}{b}=\log a-\log b$ , so above equation becomes,
$\Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\log \left[ \dfrac{(1+x)}{(1-x)} \right]_{2}^{3}$
Applying the upper and lower bounds, we get
$\begin{align}
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log \dfrac{(1+3)}{(1-3)}-\log \dfrac{(1+2)}{(1-2)} \right] \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log \dfrac{4}{2}-\log \dfrac{3}{1} \right] \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log 2-\log 3 \right] \\
& \Rightarrow \int\limits_{2}^{3}{\dfrac{1}{1-{{x}^{2}}}}dx=\dfrac{1}{2}\left[ \log \dfrac{2}{3} \right] \\
\end{align}$
Hence the correct answer is option(a).
Note: The possible mistake is instead of solving by partial fraction decomposition, students consider the formula of $\int{\dfrac{1}{1-{{x}^{2}}}.dx}$.
This will lead to totally different and wrong answers.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

