
How do I evaluate $ \sin \left( {\arccos \left( {\dfrac{1}{3}} \right)} \right) $ ?
Answer
556.2k+ views
Hint: In order to determine the simplification of the above question, let the $ \arccos \left( {\dfrac{1}{3}} \right) = \theta $ ,and transposing $ \arccos $ on the right-hand side. Now replacing the $ \cos \theta $ with its value in the identity of trigonometry which state that $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $ and after solving this for $ \sin \theta $ ,put back the $ \theta $ assumed earlier to obtain your required result.
Formula :
$ \sin \theta = \dfrac{{\tan \theta }}{{\sec \theta }} $
$ {\sec ^2}\theta = {\tan ^2}\theta + 1 $
$ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
Complete step-by-step answer:
We are given a trigonometric expression $ \sin \left( {\arccos \left( {\dfrac{1}{3}} \right)} \right) $
Let $ \arccos \left( {\dfrac{1}{3}} \right) = \theta $ ---------(1)
Transposing $ \arccos $ on the right hand side of the equation we get,
$ \cos \theta = \dfrac{1}{3} $ ---------(2)
Since, we know the identity of trigonometry which states that the sum of square of sine and square of cosine is equal to one. i.e.
$ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
Taking $ {\cos ^2}\theta $ on the right-hand side
$ {\sin ^2}\theta = 1 - {\cos ^2}\theta $
Now taking square root on both the sides, we get
$ \sin \theta = \pm \sqrt {1 - {{\cos }^2}\theta } $
Now putting the value of $ \cos \theta $ from equation (2),
$
\sin \theta = \pm \sqrt {1 - {{\left( {\dfrac{1}{3}} \right)}^2}} \\
= \pm \sqrt {1 - \left( {\dfrac{1}{9}} \right)} \\
= \pm \sqrt {1 - \dfrac{1}{9}} \\
= \pm \sqrt {\dfrac{{9 - 1}}{9}} \\
= \pm \sqrt {\dfrac{8}{9}} \;
$
Since $ \sqrt 9 = 3 $ and $ \sqrt 8 = \sqrt {4 \times 2} = 2\sqrt 2 $
$ \sin \theta = \pm \dfrac{{2\sqrt 2 }}{3} $
Putting back the value of $ \theta $ ,which we have assumed in equation 1,
$ \sin \left( {\arccos \left( {\dfrac{1}{3}} \right)} \right) = \pm \dfrac{{2\sqrt 2 }}{3} $
Therefore, the value of $ \sin \left( {\arccos \left( {\dfrac{1}{3}} \right)} \right) $ is equal to $ \pm \dfrac{{2\sqrt 2 }}{3} $ .
So, the correct answer is “ $ \pm \dfrac{{2\sqrt 2 }}{3} $ ”.
Note: 1.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
2.Domain and range of inverse of cosine is $ \left[ { - 1,1} \right] $ and $ \left[ {0,\pi } \right] $ respectively.
3. Domain and range of inverse of cosine is $ \left[ { - 1,1} \right] $ and $ \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] $ respectively.
Formula :
$ \sin \theta = \dfrac{{\tan \theta }}{{\sec \theta }} $
$ {\sec ^2}\theta = {\tan ^2}\theta + 1 $
$ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
Complete step-by-step answer:
We are given a trigonometric expression $ \sin \left( {\arccos \left( {\dfrac{1}{3}} \right)} \right) $
Let $ \arccos \left( {\dfrac{1}{3}} \right) = \theta $ ---------(1)
Transposing $ \arccos $ on the right hand side of the equation we get,
$ \cos \theta = \dfrac{1}{3} $ ---------(2)
Since, we know the identity of trigonometry which states that the sum of square of sine and square of cosine is equal to one. i.e.
$ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
Taking $ {\cos ^2}\theta $ on the right-hand side
$ {\sin ^2}\theta = 1 - {\cos ^2}\theta $
Now taking square root on both the sides, we get
$ \sin \theta = \pm \sqrt {1 - {{\cos }^2}\theta } $
Now putting the value of $ \cos \theta $ from equation (2),
$
\sin \theta = \pm \sqrt {1 - {{\left( {\dfrac{1}{3}} \right)}^2}} \\
= \pm \sqrt {1 - \left( {\dfrac{1}{9}} \right)} \\
= \pm \sqrt {1 - \dfrac{1}{9}} \\
= \pm \sqrt {\dfrac{{9 - 1}}{9}} \\
= \pm \sqrt {\dfrac{8}{9}} \;
$
Since $ \sqrt 9 = 3 $ and $ \sqrt 8 = \sqrt {4 \times 2} = 2\sqrt 2 $
$ \sin \theta = \pm \dfrac{{2\sqrt 2 }}{3} $
Putting back the value of $ \theta $ ,which we have assumed in equation 1,
$ \sin \left( {\arccos \left( {\dfrac{1}{3}} \right)} \right) = \pm \dfrac{{2\sqrt 2 }}{3} $
Therefore, the value of $ \sin \left( {\arccos \left( {\dfrac{1}{3}} \right)} \right) $ is equal to $ \pm \dfrac{{2\sqrt 2 }}{3} $ .
So, the correct answer is “ $ \pm \dfrac{{2\sqrt 2 }}{3} $ ”.
Note: 1.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
2.Domain and range of inverse of cosine is $ \left[ { - 1,1} \right] $ and $ \left[ {0,\pi } \right] $ respectively.
3. Domain and range of inverse of cosine is $ \left[ { - 1,1} \right] $ and $ \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] $ respectively.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

