
Evaluate $\sin 24{}^\circ +\cos 60{}^\circ =?$
Answer
592.5k+ views
Hint: We will be using the concept of trigonometric functions to solve the problem. We will be using the trigonometric identities like,
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \sin 2A=2\sin A\cos A \\
& \sin \left( 90-A \right)=\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
Complete step-by-step answer:
Now, we have to find the value of,
$\sin 24{}^\circ +\cos 60{}^\circ $
Now, we know that $\sin \left( 90-6 \right)=\cos 6$.
$\sin 24{}^\circ +\cos 84{}^\circ $
Now, we know that,
$\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
So, we have,
$\begin{align}
& 2\sin \left( \dfrac{24{}^\circ +84{}^\circ }{2} \right)\cos \left( \dfrac{24{}^\circ -84{}^\circ }{2} \right) \\
& 2\sin \left( \dfrac{108{}^\circ }{2} \right)\cos \left( \dfrac{60{}^\circ }{2} \right) \\
& 2\sin \left( 54{}^\circ \right)\cos 30{}^\circ \\
\end{align}$
Now, we know that $\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}$. So,
$\begin{align}
& 2\times \dfrac{\sqrt{3}}{2}\sin \left( 54{}^\circ \right) \\
& \sin 24{}^\circ +\cos 60{}^\circ =\sqrt{3}\sin \left( 54{}^\circ \right)..........\left( 1 \right) \\
\end{align}$
Now, we know that,
\[\begin{align}
& \cos \left( 90{}^\circ -54{}^\circ \right)=\sin \left( 54{}^\circ \right) \\
& \Rightarrow \sin 54{}^\circ =\cos 36{}^\circ \\
\end{align}\]
Also, we know that,
${{\cos }^{2}}A=1-2{{\sin }^{2}}A$
So, let
$\begin{align}
& 2A=36 \\
& A=18{}^\circ \\
\end{align}$
So, we have,
$\begin{align}
& \sin 54{}^\circ ={{\cos }^{2}}36{}^\circ =1-2{{\sin }^{2}}18{}^\circ ...........\left( 2 \right) \\
& \cos 2A=1-2{{\sin }^{2}}A \\
\end{align}$
Now, we have,
$\begin{align}
& A=18 \\
& 5A=90 \\
& 2A+3A=90{}^\circ \\
& 2A=90-3A \\
\end{align}$
Now, we will take sin on both sides, so we have,
$\begin{align}
& \sin \left( 2A \right)=\sin \left( 90-3A \right) \\
& \sin \left( 2A \right)=\cos \left( 3A \right) \\
\end{align}$
Now, we know that,
$\begin{align}
& \sin 2A=2\sin A\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
So, we have,
$\begin{align}
& 2\sin A\cos A=4{{\cos }^{3}}A-3\cos A \\
& 2\sin A\cos A-4{{\cos }^{3}}A+3\cos A=0 \\
& \cos A\left( 2\sin A-4{{\cos }^{2}}A+3 \right)=0 \\
\end{align}$
Now, we know that,
$\begin{align}
& \cos A=\cos \left( 18 \right)\ne 0 \\
& \therefore 2\sin A-4{{\cos }^{2}}A+3=0 \\
\end{align}$
Now, we substitute ${{\cos }^{2}}A=1-{{\sin }^{2}}A$. So, we have,
$\begin{align}
& 2\sin A-4\left( 1-{{\sin }^{2}}A \right)+3=0 \\
& 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}$
Now, we will use quadratic formula to find sin A. So, we have,
$\begin{align}
& \sin A=\dfrac{-2\pm \sqrt{20}}{2\times 4} \\
& =\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}$
Now, as we have $A=18{}^\circ $and therefore, $\sin \left( 18{}^\circ \right)>0$. So, we reject $\sin A\ne \dfrac{-1-\sqrt{5}}{4}$.
$\sin 18{}^\circ =\dfrac{-1+\sqrt{5}}{4}$
Now, from (2) we have,
\[\begin{align}
& \sin 54{}^\circ =1-2{{\sin }^{2}}18 \\
& =1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& =1-\dfrac{2}{16}\left( 1+5-2\sqrt{5} \right) \\
& =1-\dfrac{1}{8}\left( 6-2\sqrt{5} \right) \\
& =1-\dfrac{1}{4}\left( 3-\sqrt{5} \right) \\
& =1-\dfrac{3}{4}+\dfrac{\sqrt{5}}{4} \\
& =\dfrac{1+\sqrt{5}}{4} \\
\end{align}\]
So, now from (1), we have,
$\begin{align}
& \sin 24+\cos 60=\sqrt{3}\sin 54{}^\circ \\
& =\sqrt{3}\dfrac{\left( 1+\sqrt{5} \right)}{4} \\
\end{align}$
Note: To solve these types of questions it is important to note how we have found the value of $\sin 54{}^\circ $. Also, it is important to remember identities like,
$\begin{align}
& \sin 2A=2\sin A\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \sin 2A=2\sin A\cos A \\
& \sin \left( 90-A \right)=\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
Complete step-by-step answer:
Now, we have to find the value of,
$\sin 24{}^\circ +\cos 60{}^\circ $
Now, we know that $\sin \left( 90-6 \right)=\cos 6$.
$\sin 24{}^\circ +\cos 84{}^\circ $
Now, we know that,
$\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
So, we have,
$\begin{align}
& 2\sin \left( \dfrac{24{}^\circ +84{}^\circ }{2} \right)\cos \left( \dfrac{24{}^\circ -84{}^\circ }{2} \right) \\
& 2\sin \left( \dfrac{108{}^\circ }{2} \right)\cos \left( \dfrac{60{}^\circ }{2} \right) \\
& 2\sin \left( 54{}^\circ \right)\cos 30{}^\circ \\
\end{align}$
Now, we know that $\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}$. So,
$\begin{align}
& 2\times \dfrac{\sqrt{3}}{2}\sin \left( 54{}^\circ \right) \\
& \sin 24{}^\circ +\cos 60{}^\circ =\sqrt{3}\sin \left( 54{}^\circ \right)..........\left( 1 \right) \\
\end{align}$
Now, we know that,
\[\begin{align}
& \cos \left( 90{}^\circ -54{}^\circ \right)=\sin \left( 54{}^\circ \right) \\
& \Rightarrow \sin 54{}^\circ =\cos 36{}^\circ \\
\end{align}\]
Also, we know that,
${{\cos }^{2}}A=1-2{{\sin }^{2}}A$
So, let
$\begin{align}
& 2A=36 \\
& A=18{}^\circ \\
\end{align}$
So, we have,
$\begin{align}
& \sin 54{}^\circ ={{\cos }^{2}}36{}^\circ =1-2{{\sin }^{2}}18{}^\circ ...........\left( 2 \right) \\
& \cos 2A=1-2{{\sin }^{2}}A \\
\end{align}$
Now, we have,
$\begin{align}
& A=18 \\
& 5A=90 \\
& 2A+3A=90{}^\circ \\
& 2A=90-3A \\
\end{align}$
Now, we will take sin on both sides, so we have,
$\begin{align}
& \sin \left( 2A \right)=\sin \left( 90-3A \right) \\
& \sin \left( 2A \right)=\cos \left( 3A \right) \\
\end{align}$
Now, we know that,
$\begin{align}
& \sin 2A=2\sin A\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
So, we have,
$\begin{align}
& 2\sin A\cos A=4{{\cos }^{3}}A-3\cos A \\
& 2\sin A\cos A-4{{\cos }^{3}}A+3\cos A=0 \\
& \cos A\left( 2\sin A-4{{\cos }^{2}}A+3 \right)=0 \\
\end{align}$
Now, we know that,
$\begin{align}
& \cos A=\cos \left( 18 \right)\ne 0 \\
& \therefore 2\sin A-4{{\cos }^{2}}A+3=0 \\
\end{align}$
Now, we substitute ${{\cos }^{2}}A=1-{{\sin }^{2}}A$. So, we have,
$\begin{align}
& 2\sin A-4\left( 1-{{\sin }^{2}}A \right)+3=0 \\
& 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}$
Now, we will use quadratic formula to find sin A. So, we have,
$\begin{align}
& \sin A=\dfrac{-2\pm \sqrt{20}}{2\times 4} \\
& =\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}$
Now, as we have $A=18{}^\circ $and therefore, $\sin \left( 18{}^\circ \right)>0$. So, we reject $\sin A\ne \dfrac{-1-\sqrt{5}}{4}$.
$\sin 18{}^\circ =\dfrac{-1+\sqrt{5}}{4}$
Now, from (2) we have,
\[\begin{align}
& \sin 54{}^\circ =1-2{{\sin }^{2}}18 \\
& =1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& =1-\dfrac{2}{16}\left( 1+5-2\sqrt{5} \right) \\
& =1-\dfrac{1}{8}\left( 6-2\sqrt{5} \right) \\
& =1-\dfrac{1}{4}\left( 3-\sqrt{5} \right) \\
& =1-\dfrac{3}{4}+\dfrac{\sqrt{5}}{4} \\
& =\dfrac{1+\sqrt{5}}{4} \\
\end{align}\]
So, now from (1), we have,
$\begin{align}
& \sin 24+\cos 60=\sqrt{3}\sin 54{}^\circ \\
& =\sqrt{3}\dfrac{\left( 1+\sqrt{5} \right)}{4} \\
\end{align}$
Note: To solve these types of questions it is important to note how we have found the value of $\sin 54{}^\circ $. Also, it is important to remember identities like,
$\begin{align}
& \sin 2A=2\sin A\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

