
Evaluate $\sin 24{}^\circ +\cos 60{}^\circ =?$
Answer
605.7k+ views
Hint: We will be using the concept of trigonometric functions to solve the problem. We will be using the trigonometric identities like,
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \sin 2A=2\sin A\cos A \\
& \sin \left( 90-A \right)=\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
Complete step-by-step answer:
Now, we have to find the value of,
$\sin 24{}^\circ +\cos 60{}^\circ $
Now, we know that $\sin \left( 90-6 \right)=\cos 6$.
$\sin 24{}^\circ +\cos 84{}^\circ $
Now, we know that,
$\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
So, we have,
$\begin{align}
& 2\sin \left( \dfrac{24{}^\circ +84{}^\circ }{2} \right)\cos \left( \dfrac{24{}^\circ -84{}^\circ }{2} \right) \\
& 2\sin \left( \dfrac{108{}^\circ }{2} \right)\cos \left( \dfrac{60{}^\circ }{2} \right) \\
& 2\sin \left( 54{}^\circ \right)\cos 30{}^\circ \\
\end{align}$
Now, we know that $\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}$. So,
$\begin{align}
& 2\times \dfrac{\sqrt{3}}{2}\sin \left( 54{}^\circ \right) \\
& \sin 24{}^\circ +\cos 60{}^\circ =\sqrt{3}\sin \left( 54{}^\circ \right)..........\left( 1 \right) \\
\end{align}$
Now, we know that,
\[\begin{align}
& \cos \left( 90{}^\circ -54{}^\circ \right)=\sin \left( 54{}^\circ \right) \\
& \Rightarrow \sin 54{}^\circ =\cos 36{}^\circ \\
\end{align}\]
Also, we know that,
${{\cos }^{2}}A=1-2{{\sin }^{2}}A$
So, let
$\begin{align}
& 2A=36 \\
& A=18{}^\circ \\
\end{align}$
So, we have,
$\begin{align}
& \sin 54{}^\circ ={{\cos }^{2}}36{}^\circ =1-2{{\sin }^{2}}18{}^\circ ...........\left( 2 \right) \\
& \cos 2A=1-2{{\sin }^{2}}A \\
\end{align}$
Now, we have,
$\begin{align}
& A=18 \\
& 5A=90 \\
& 2A+3A=90{}^\circ \\
& 2A=90-3A \\
\end{align}$
Now, we will take sin on both sides, so we have,
$\begin{align}
& \sin \left( 2A \right)=\sin \left( 90-3A \right) \\
& \sin \left( 2A \right)=\cos \left( 3A \right) \\
\end{align}$
Now, we know that,
$\begin{align}
& \sin 2A=2\sin A\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
So, we have,
$\begin{align}
& 2\sin A\cos A=4{{\cos }^{3}}A-3\cos A \\
& 2\sin A\cos A-4{{\cos }^{3}}A+3\cos A=0 \\
& \cos A\left( 2\sin A-4{{\cos }^{2}}A+3 \right)=0 \\
\end{align}$
Now, we know that,
$\begin{align}
& \cos A=\cos \left( 18 \right)\ne 0 \\
& \therefore 2\sin A-4{{\cos }^{2}}A+3=0 \\
\end{align}$
Now, we substitute ${{\cos }^{2}}A=1-{{\sin }^{2}}A$. So, we have,
$\begin{align}
& 2\sin A-4\left( 1-{{\sin }^{2}}A \right)+3=0 \\
& 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}$
Now, we will use quadratic formula to find sin A. So, we have,
$\begin{align}
& \sin A=\dfrac{-2\pm \sqrt{20}}{2\times 4} \\
& =\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}$
Now, as we have $A=18{}^\circ $and therefore, $\sin \left( 18{}^\circ \right)>0$. So, we reject $\sin A\ne \dfrac{-1-\sqrt{5}}{4}$.
$\sin 18{}^\circ =\dfrac{-1+\sqrt{5}}{4}$
Now, from (2) we have,
\[\begin{align}
& \sin 54{}^\circ =1-2{{\sin }^{2}}18 \\
& =1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& =1-\dfrac{2}{16}\left( 1+5-2\sqrt{5} \right) \\
& =1-\dfrac{1}{8}\left( 6-2\sqrt{5} \right) \\
& =1-\dfrac{1}{4}\left( 3-\sqrt{5} \right) \\
& =1-\dfrac{3}{4}+\dfrac{\sqrt{5}}{4} \\
& =\dfrac{1+\sqrt{5}}{4} \\
\end{align}\]
So, now from (1), we have,
$\begin{align}
& \sin 24+\cos 60=\sqrt{3}\sin 54{}^\circ \\
& =\sqrt{3}\dfrac{\left( 1+\sqrt{5} \right)}{4} \\
\end{align}$
Note: To solve these types of questions it is important to note how we have found the value of $\sin 54{}^\circ $. Also, it is important to remember identities like,
$\begin{align}
& \sin 2A=2\sin A\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \sin 2A=2\sin A\cos A \\
& \sin \left( 90-A \right)=\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
Complete step-by-step answer:
Now, we have to find the value of,
$\sin 24{}^\circ +\cos 60{}^\circ $
Now, we know that $\sin \left( 90-6 \right)=\cos 6$.
$\sin 24{}^\circ +\cos 84{}^\circ $
Now, we know that,
$\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
So, we have,
$\begin{align}
& 2\sin \left( \dfrac{24{}^\circ +84{}^\circ }{2} \right)\cos \left( \dfrac{24{}^\circ -84{}^\circ }{2} \right) \\
& 2\sin \left( \dfrac{108{}^\circ }{2} \right)\cos \left( \dfrac{60{}^\circ }{2} \right) \\
& 2\sin \left( 54{}^\circ \right)\cos 30{}^\circ \\
\end{align}$
Now, we know that $\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}$. So,
$\begin{align}
& 2\times \dfrac{\sqrt{3}}{2}\sin \left( 54{}^\circ \right) \\
& \sin 24{}^\circ +\cos 60{}^\circ =\sqrt{3}\sin \left( 54{}^\circ \right)..........\left( 1 \right) \\
\end{align}$
Now, we know that,
\[\begin{align}
& \cos \left( 90{}^\circ -54{}^\circ \right)=\sin \left( 54{}^\circ \right) \\
& \Rightarrow \sin 54{}^\circ =\cos 36{}^\circ \\
\end{align}\]
Also, we know that,
${{\cos }^{2}}A=1-2{{\sin }^{2}}A$
So, let
$\begin{align}
& 2A=36 \\
& A=18{}^\circ \\
\end{align}$
So, we have,
$\begin{align}
& \sin 54{}^\circ ={{\cos }^{2}}36{}^\circ =1-2{{\sin }^{2}}18{}^\circ ...........\left( 2 \right) \\
& \cos 2A=1-2{{\sin }^{2}}A \\
\end{align}$
Now, we have,
$\begin{align}
& A=18 \\
& 5A=90 \\
& 2A+3A=90{}^\circ \\
& 2A=90-3A \\
\end{align}$
Now, we will take sin on both sides, so we have,
$\begin{align}
& \sin \left( 2A \right)=\sin \left( 90-3A \right) \\
& \sin \left( 2A \right)=\cos \left( 3A \right) \\
\end{align}$
Now, we know that,
$\begin{align}
& \sin 2A=2\sin A\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
So, we have,
$\begin{align}
& 2\sin A\cos A=4{{\cos }^{3}}A-3\cos A \\
& 2\sin A\cos A-4{{\cos }^{3}}A+3\cos A=0 \\
& \cos A\left( 2\sin A-4{{\cos }^{2}}A+3 \right)=0 \\
\end{align}$
Now, we know that,
$\begin{align}
& \cos A=\cos \left( 18 \right)\ne 0 \\
& \therefore 2\sin A-4{{\cos }^{2}}A+3=0 \\
\end{align}$
Now, we substitute ${{\cos }^{2}}A=1-{{\sin }^{2}}A$. So, we have,
$\begin{align}
& 2\sin A-4\left( 1-{{\sin }^{2}}A \right)+3=0 \\
& 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}$
Now, we will use quadratic formula to find sin A. So, we have,
$\begin{align}
& \sin A=\dfrac{-2\pm \sqrt{20}}{2\times 4} \\
& =\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}$
Now, as we have $A=18{}^\circ $and therefore, $\sin \left( 18{}^\circ \right)>0$. So, we reject $\sin A\ne \dfrac{-1-\sqrt{5}}{4}$.
$\sin 18{}^\circ =\dfrac{-1+\sqrt{5}}{4}$
Now, from (2) we have,
\[\begin{align}
& \sin 54{}^\circ =1-2{{\sin }^{2}}18 \\
& =1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& =1-\dfrac{2}{16}\left( 1+5-2\sqrt{5} \right) \\
& =1-\dfrac{1}{8}\left( 6-2\sqrt{5} \right) \\
& =1-\dfrac{1}{4}\left( 3-\sqrt{5} \right) \\
& =1-\dfrac{3}{4}+\dfrac{\sqrt{5}}{4} \\
& =\dfrac{1+\sqrt{5}}{4} \\
\end{align}\]
So, now from (1), we have,
$\begin{align}
& \sin 24+\cos 60=\sqrt{3}\sin 54{}^\circ \\
& =\sqrt{3}\dfrac{\left( 1+\sqrt{5} \right)}{4} \\
\end{align}$
Note: To solve these types of questions it is important to note how we have found the value of $\sin 54{}^\circ $. Also, it is important to remember identities like,
$\begin{align}
& \sin 2A=2\sin A\cos A \\
& \cos 3A=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

