
How do you evaluate ${{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)?$
Answer
451.5k+ views
Hint: We will deal with the inner bracket first. We will use an important trigonometric identity to find the value of the given trigonometric function. That is given by, $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.$ Then we will consider the whole function.
Complete step by step solution:
Let us take the given trigonometric function ${{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)$ into consideration.
Take the value inside the inner bracket, $\dfrac{11\pi }{10}.$
We can write this as,
$\Rightarrow \dfrac{11\pi }{10}=\dfrac{\left( 10+1 \right)\pi }{10}.$
This can be written as,
$\Rightarrow \dfrac{11\pi }{10}=\dfrac{10\pi +\pi }{10}.$
From this we will get,
$\Rightarrow \dfrac{11\pi }{10}=\dfrac{10\pi }{10}+\dfrac{\pi }{10}.$
Cancelling $10$ from the first fraction in the left-hand side,
$\Rightarrow \dfrac{11\pi }{10}=\pi +\dfrac{\pi }{10}.$
Now we are supposed to consider the term inside the outer bracket, $\sin \dfrac{11\pi }{10}.$
Using the above obtained equation to write,
$\Rightarrow \sin \dfrac{11\pi }{10}=\sin \left( \pi +\dfrac{\pi }{10} \right).$
Hence, we can see that the right-hand side of the above equation is in the form $\sin \left( A+B \right).$
So, let us recall the trigonometric formula, $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.$
Using this formula will help us to find the value of the given trigonometric function.
Here, $A=\pi $ and $B=\dfrac{\pi }{10}.$
We will get the following equation,
$\sin \dfrac{11\pi }{10}=\sin \left( \pi +\dfrac{\pi }{10} \right)=\sin \pi \cos \dfrac{\pi }{10}+\cos \pi \sin \dfrac{\pi }{10}.$
We know the values of the functions in the above obtained equation.
It is known that, $\sin \pi =0$ and $\cos \pi =-1.$
Therefore, the first summand in the right-hand side becomes,
$\Rightarrow \sin \pi \cos \dfrac{\pi }{10}=0\times \cos \dfrac{\pi }{10}=0.$
The second summand in the right-hand side becomes,
$\Rightarrow \cos \pi \sin \dfrac{\pi }{10}=\left( -1 \right)\sin \dfrac{\pi }{10}=-\sin \dfrac{\pi }{10}.$
And hence, the equation will become as,
$\Rightarrow \sin \dfrac{11\pi }{10}=0\times \cos \dfrac{\pi }{10}+\left( -1 \right)\sin \dfrac{\pi }{10}.$
That is,
$\Rightarrow \sin \dfrac{11\pi }{10}=0+\left( -1 \right)\sin \dfrac{\pi }{10}=-\sin \dfrac{\pi }{10}.$
Now we consider the whole function we are given with, then
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( -\sin \left( \dfrac{\pi }{10} \right) \right).$
Since the sine function is odd, $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -\theta \right)=-{{\sin }^{-1}}\theta $
We will get,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{10} \right) \right).$
Now we will have,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-\left( \dfrac{\pi }{10} \right).$ Since, ${{\sin }^{-1}}\left( \sin \theta \right)=\theta ,\,\,\,\,\,\,\,\,\,\,\theta \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$ and also, $\dfrac{\pi }{10}\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].$
Hence, ${{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-\left( \dfrac{\pi }{10} \right).$
Note: Note that there is another method:
Consider the trigonometric function we are given with,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)$
Now,
\[\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( \sin \left( \dfrac{10\pi +\pi }{10} \right) \right).\]
We repeat the procedure inside the inner bracket,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( \sin \left( \dfrac{10\pi }{10}+\dfrac{\pi }{10} \right) \right).$
Then, we get
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( \sin \left( \pi +\dfrac{\pi }{10} \right) \right).$
In the third quadrant, sine is negative.
That is, $\sin \left( \pi +\theta \right)=-\sin \theta .$
Now the above equation becomes,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( -\sin \left( \dfrac{\pi }{10} \right) \right).$
We use the identity ${{\sin }^{-1}}\left( -\theta \right)=-{{\sin }^{-1}}\theta $,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{10} \right) \right).$
Now we use another identity, ${{\sin }^{-1}}\left( \sin \theta \right)=\theta ,$ if $\theta \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].$
\[\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-\dfrac{\pi }{10}.\]
Complete step by step solution:
Let us take the given trigonometric function ${{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)$ into consideration.
Take the value inside the inner bracket, $\dfrac{11\pi }{10}.$
We can write this as,
$\Rightarrow \dfrac{11\pi }{10}=\dfrac{\left( 10+1 \right)\pi }{10}.$
This can be written as,
$\Rightarrow \dfrac{11\pi }{10}=\dfrac{10\pi +\pi }{10}.$
From this we will get,
$\Rightarrow \dfrac{11\pi }{10}=\dfrac{10\pi }{10}+\dfrac{\pi }{10}.$
Cancelling $10$ from the first fraction in the left-hand side,
$\Rightarrow \dfrac{11\pi }{10}=\pi +\dfrac{\pi }{10}.$
Now we are supposed to consider the term inside the outer bracket, $\sin \dfrac{11\pi }{10}.$
Using the above obtained equation to write,
$\Rightarrow \sin \dfrac{11\pi }{10}=\sin \left( \pi +\dfrac{\pi }{10} \right).$
Hence, we can see that the right-hand side of the above equation is in the form $\sin \left( A+B \right).$
So, let us recall the trigonometric formula, $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.$
Using this formula will help us to find the value of the given trigonometric function.
Here, $A=\pi $ and $B=\dfrac{\pi }{10}.$
We will get the following equation,
$\sin \dfrac{11\pi }{10}=\sin \left( \pi +\dfrac{\pi }{10} \right)=\sin \pi \cos \dfrac{\pi }{10}+\cos \pi \sin \dfrac{\pi }{10}.$
We know the values of the functions in the above obtained equation.
It is known that, $\sin \pi =0$ and $\cos \pi =-1.$
Therefore, the first summand in the right-hand side becomes,
$\Rightarrow \sin \pi \cos \dfrac{\pi }{10}=0\times \cos \dfrac{\pi }{10}=0.$
The second summand in the right-hand side becomes,
$\Rightarrow \cos \pi \sin \dfrac{\pi }{10}=\left( -1 \right)\sin \dfrac{\pi }{10}=-\sin \dfrac{\pi }{10}.$
And hence, the equation will become as,
$\Rightarrow \sin \dfrac{11\pi }{10}=0\times \cos \dfrac{\pi }{10}+\left( -1 \right)\sin \dfrac{\pi }{10}.$
That is,
$\Rightarrow \sin \dfrac{11\pi }{10}=0+\left( -1 \right)\sin \dfrac{\pi }{10}=-\sin \dfrac{\pi }{10}.$
Now we consider the whole function we are given with, then
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( -\sin \left( \dfrac{\pi }{10} \right) \right).$
Since the sine function is odd, $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -\theta \right)=-{{\sin }^{-1}}\theta $
We will get,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{10} \right) \right).$
Now we will have,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-\left( \dfrac{\pi }{10} \right).$ Since, ${{\sin }^{-1}}\left( \sin \theta \right)=\theta ,\,\,\,\,\,\,\,\,\,\,\theta \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$ and also, $\dfrac{\pi }{10}\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].$
Hence, ${{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-\left( \dfrac{\pi }{10} \right).$
Note: Note that there is another method:
Consider the trigonometric function we are given with,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)$
Now,
\[\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( \sin \left( \dfrac{10\pi +\pi }{10} \right) \right).\]
We repeat the procedure inside the inner bracket,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( \sin \left( \dfrac{10\pi }{10}+\dfrac{\pi }{10} \right) \right).$
Then, we get
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( \sin \left( \pi +\dfrac{\pi }{10} \right) \right).$
In the third quadrant, sine is negative.
That is, $\sin \left( \pi +\theta \right)=-\sin \theta .$
Now the above equation becomes,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)={{\sin }^{-1}}\left( -\sin \left( \dfrac{\pi }{10} \right) \right).$
We use the identity ${{\sin }^{-1}}\left( -\theta \right)=-{{\sin }^{-1}}\theta $,
$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{10} \right) \right).$
Now we use another identity, ${{\sin }^{-1}}\left( \sin \theta \right)=\theta ,$ if $\theta \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].$
\[\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{11\pi }{10} \right) \right)=-\dfrac{\pi }{10}.\]
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
