
Evaluate: ${\left( {101} \right)^2}$.
Answer
516k+ views
Hint: We can find the square of a number using many methods, but we are going to use the mathematical identity to find its square. The identity we will be using is
$ \to {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
Here, we need to express 101 as a sum of two numbers and then use the above identity.
Complete step-by-step answer:
In this question, we have to find the square of 101 using the identity.
Now, we can find the square using many different methods like log method, but in this question, we are going to use the mathematical identity to find the square of a number.
The identity is
$ \to {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
So, we are going to use this identity to find the square of 101.
For that, we need to express 101 as a sum of two numbers. Now, we could do this in many ways like $\left( {97 + 4} \right)$, $\left( {98 + 3} \right)$ but we need to express it in such a way that we do not need to use the calculator. So, we will be expressing 101 as $\left( {100 + 1} \right)$.
Hence, $a = 100$ and $b = 1$. So, using the identity we will get
$ \to {\left( {101} \right)^2} = {\left( {100 + 1} \right)^2}$
$
= {\left( {100} \right)^2} + 2\left( {100} \right)\left( 1 \right) + {\left( 1 \right)^2} \\
= 10000 + 200 + 1 \\
= 10000 + 201 \\
= 10201 \\
$
Hence, the square of 101 is 10201.
Note: We can also find the square of 101 using another property, that is ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$.
Here, we need to express 101 as a difference of two numbers instead of sum of two numbers. So, we can express 101 as $\left( {110 - 9} \right)$. Hence, using the identity we will get,
$ \to {\left( {101} \right)^2} = {\left( {110 - 9} \right)^2}$
$
= {\left( {110} \right)^2} - 2\left( {110} \right)\left( 9 \right) + {\left( 9 \right)^2} \\
= 12100 - 1980 + 81 \\
= 12100 - 1899 \\
= 10201 \\
$
Hence, the square of 101 is 10201.
$ \to {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
Here, we need to express 101 as a sum of two numbers and then use the above identity.
Complete step-by-step answer:
In this question, we have to find the square of 101 using the identity.
Now, we can find the square using many different methods like log method, but in this question, we are going to use the mathematical identity to find the square of a number.
The identity is
$ \to {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
So, we are going to use this identity to find the square of 101.
For that, we need to express 101 as a sum of two numbers. Now, we could do this in many ways like $\left( {97 + 4} \right)$, $\left( {98 + 3} \right)$ but we need to express it in such a way that we do not need to use the calculator. So, we will be expressing 101 as $\left( {100 + 1} \right)$.
Hence, $a = 100$ and $b = 1$. So, using the identity we will get
$ \to {\left( {101} \right)^2} = {\left( {100 + 1} \right)^2}$
$
= {\left( {100} \right)^2} + 2\left( {100} \right)\left( 1 \right) + {\left( 1 \right)^2} \\
= 10000 + 200 + 1 \\
= 10000 + 201 \\
= 10201 \\
$
Hence, the square of 101 is 10201.
Note: We can also find the square of 101 using another property, that is ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$.
Here, we need to express 101 as a difference of two numbers instead of sum of two numbers. So, we can express 101 as $\left( {110 - 9} \right)$. Hence, using the identity we will get,
$ \to {\left( {101} \right)^2} = {\left( {110 - 9} \right)^2}$
$
= {\left( {110} \right)^2} - 2\left( {110} \right)\left( 9 \right) + {\left( 9 \right)^2} \\
= 12100 - 1980 + 81 \\
= 12100 - 1899 \\
= 10201 \\
$
Hence, the square of 101 is 10201.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
How many millions make a billion class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the capital city of Australia? A) Sydney B) Melbourne C) Brisbane D) Canberra

Check whether the given numbers are divisible by 11 class 6 maths CBSE

What is the shape of Earth A Circle B Square C Sphere class 6 social science CBSE

Why is the Earth called a unique planet class 6 social science CBSE


