
Evaluate: $\int{\sin 4x{{e}^{{{\tan }^{2}}x}}dx}$
Answer
571.8k+ views
Hint: Here, this question is an indefinite integration with trigonometric terms. Here, we can't directly solve such questions, we have to manipulate the terms into a simpler form so that it can be substituted to other simpler form and finally integrate and get an answer. Here, we have ${{\tan }^{2}}x$t as the power of 'e'. Therefore, it is clear that, we have to substitute the ${{\tan }^{2}}x$ as t. But before that, we will manipulate the other terms in such a way that it converts into ${{\tan }^{2}}x$ terms format.
Complete step by step answer:
So, let's get started, we have been given in the question:
Let’s suppose it as \[I=\int{\sin 4x{{e}^{{{\tan }^{2}}x}}}dx\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
We know,
\[\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta \\
& \therefore \sin 4x=\sin 2\left( 2x \right)=2\sin \left( 2x \right)\cdot \cos \left( 2x \right) \\
\end{align}\]
Now put in equation (i) we get:
\[I=\int{2\sin 2x\cos 2x\text{ }{{e}^{{{\tan }^{2}}x}}\text{ }}dx\]
Now, we know the formula,
\[\sin 2x=\dfrac{2\tan x}{\left( 1+{{\tan }^{2}}x \right)}\text{ and }\cos 2x=\left( \dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} \right)\]
Therefore,
\[\begin{align}
& I=\int{2\times \left( \dfrac{2\tan x}{1+{{\tan }^{2}}x} \right)}\times \left( \dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} \right){{e}^{{{\tan }^{2}}x}}dx \\
& I=4\int{\dfrac{\tan x\left( 1-{{\tan }^{2}}x \right)}{{{\left( 1+{{\tan }^{2}}x \right)}^{2}}}}\text{ }{{e}^{{{\tan }^{2}}x}}dx \\
\end{align}\]
Now, put ${{\tan }^{2}}x=t$ by differentiating both sides, we get:
\[\begin{align}
& 2\tan x{{\sec }^{2}}xdx=dt \\
& 2\tan xdx=\dfrac{dt}{{{\sec }^{2}}x} \\
& 2\tan xdx=\dfrac{dt}{\left( 1+{{\tan }^{2}}x \right)}\left( \because {{\sec }^{2}}x=\left( 1+{{\tan }^{2}}x \right) \right) \\
& \therefore 2\tan xdx=\left( \dfrac{dt}{1+t} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Hence,
\[\begin{align}
& I=4\int{\dfrac{\tan x\left( 1-{{\tan }^{2}}x \right)}{{{\left( 1+{{\tan }^{2}}x \right)}^{2}}}}\text{ }{{e}^{{{\tan }^{2}}x}}dx \\
& I=2\int{\dfrac{\left( 1-{{\tan }^{2}}x \right)}{{{\left( 1+{{\tan }^{2}}x \right)}^{2}}}}\times {{e}^{{{\tan }^{2}}x}}\left( 2\tan xdx \right) \\
& I=2\int{\dfrac{\left( 1-t \right)}{{{\left( 1+t \right)}^{2}}}}{{e}^{t}}\left( \dfrac{dt}{1+t} \right)\left( \text{from equation }\left( \text{iii} \right) \right) \\
& I=2\int{\dfrac{\left( 1-t \right)}{{{\left( 1+t \right)}^{3}}}}{{e}^{t}}dt \\
\end{align}\]
Now, add and subtract 1 in numerator, we get:
\[\begin{align}
& I=2\int{\dfrac{\left( 1+1-1-t \right)}{{{\left( 1+t \right)}^{3}}}}{{e}^{t}}dt \\
& I=2\int{\dfrac{2-\left( 1+t \right)}{{{\left( 1+t \right)}^{3}}}}{{e}^{t}}dt \\
& I=2\int{\left( \dfrac{2}{{{\left( 1+t \right)}^{3}}}-\dfrac{\left( 1+t \right)}{{{\left( 1+t \right)}^{3}}} \right)}{{e}^{t}}dt \\
& I=2\int{\left( \dfrac{2}{{{\left( 1+t \right)}^{3}}}-\dfrac{1}{{{\left( 1+t \right)}^{2}}} \right)}{{e}^{t}}dt \\
\end{align}\]
Now, we have one formula, i.e. \[\int{{{e}^{x}}}\left( f\left( x \right)+f'\left( x \right) \right)dx={{e}^{x}}f\left( x \right)+c\]
That means, if sum of function and its differentiation written with ${{e}^{x}}$ then output will be product of function and ${{e}^{x}}$
In our case, \[I=2\int{\left( \dfrac{2}{{{\left( 1+t \right)}^{3}}}+\left( \dfrac{-1}{{{\left( 1+t \right)}^{2}}} \right) \right)}{{e}^{t}}dt\]
Here, function will be $\left( \dfrac{-1}{{{\left( 1+t \right)}^{2}}} \right)$ because it's differentiation will give $\left( \dfrac{2}{{{\left( 1+t \right)}^{3}}} \right)$ i.e.
\[\begin{align}
& \dfrac{d}{dt}\left( \dfrac{-1}{{{\left( 1+t \right)}^{2}}} \right)=-\dfrac{d}{dt}\left( {{\left( 1+t \right)}^{-2}} \right) \\
& \Rightarrow -\left( -2 \right){{\left( 1+t \right)}^{-2-1}} \\
& \Rightarrow 2{{\left( 1+t \right)}^{-3}} \\
& \Rightarrow \left( \dfrac{2}{{{\left( 1+t \right)}^{-3}}} \right) \\
\end{align}\]
Hence,
\[\begin{align}
& I=2\left( {{e}^{t}}\left( \dfrac{-1}{{{\left( 1+t \right)}^{2}}} \right) \right)+c \\
& I=\dfrac{-2{{e}^{{{\tan }^{2}}x}}}{{{\left( 1+{{\tan }^{2}}x \right)}^{2}}}+c \\
\end{align}\]
Therefore, this is the required answer.
Note:
During substitution like in this particular question ${{\tan }^{2}}x=t$ then we have to convert each term of x in the integral to term in t. Also, during implementing \[\int{{{e}^{x}}}\left( f\left( x \right)+f'\left( x \right) \right)dx={{e}^{x}}f\left( x \right)+c\] formula, always remember, there is addition of function and its derivative. If there is some other sign, then manipulate it to addition form. Otherwise, we will get wrong value of f(x) and final answer will be wrong.
Complete step by step answer:
So, let's get started, we have been given in the question:
Let’s suppose it as \[I=\int{\sin 4x{{e}^{{{\tan }^{2}}x}}}dx\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
We know,
\[\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta \\
& \therefore \sin 4x=\sin 2\left( 2x \right)=2\sin \left( 2x \right)\cdot \cos \left( 2x \right) \\
\end{align}\]
Now put in equation (i) we get:
\[I=\int{2\sin 2x\cos 2x\text{ }{{e}^{{{\tan }^{2}}x}}\text{ }}dx\]
Now, we know the formula,
\[\sin 2x=\dfrac{2\tan x}{\left( 1+{{\tan }^{2}}x \right)}\text{ and }\cos 2x=\left( \dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} \right)\]
Therefore,
\[\begin{align}
& I=\int{2\times \left( \dfrac{2\tan x}{1+{{\tan }^{2}}x} \right)}\times \left( \dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} \right){{e}^{{{\tan }^{2}}x}}dx \\
& I=4\int{\dfrac{\tan x\left( 1-{{\tan }^{2}}x \right)}{{{\left( 1+{{\tan }^{2}}x \right)}^{2}}}}\text{ }{{e}^{{{\tan }^{2}}x}}dx \\
\end{align}\]
Now, put ${{\tan }^{2}}x=t$ by differentiating both sides, we get:
\[\begin{align}
& 2\tan x{{\sec }^{2}}xdx=dt \\
& 2\tan xdx=\dfrac{dt}{{{\sec }^{2}}x} \\
& 2\tan xdx=\dfrac{dt}{\left( 1+{{\tan }^{2}}x \right)}\left( \because {{\sec }^{2}}x=\left( 1+{{\tan }^{2}}x \right) \right) \\
& \therefore 2\tan xdx=\left( \dfrac{dt}{1+t} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Hence,
\[\begin{align}
& I=4\int{\dfrac{\tan x\left( 1-{{\tan }^{2}}x \right)}{{{\left( 1+{{\tan }^{2}}x \right)}^{2}}}}\text{ }{{e}^{{{\tan }^{2}}x}}dx \\
& I=2\int{\dfrac{\left( 1-{{\tan }^{2}}x \right)}{{{\left( 1+{{\tan }^{2}}x \right)}^{2}}}}\times {{e}^{{{\tan }^{2}}x}}\left( 2\tan xdx \right) \\
& I=2\int{\dfrac{\left( 1-t \right)}{{{\left( 1+t \right)}^{2}}}}{{e}^{t}}\left( \dfrac{dt}{1+t} \right)\left( \text{from equation }\left( \text{iii} \right) \right) \\
& I=2\int{\dfrac{\left( 1-t \right)}{{{\left( 1+t \right)}^{3}}}}{{e}^{t}}dt \\
\end{align}\]
Now, add and subtract 1 in numerator, we get:
\[\begin{align}
& I=2\int{\dfrac{\left( 1+1-1-t \right)}{{{\left( 1+t \right)}^{3}}}}{{e}^{t}}dt \\
& I=2\int{\dfrac{2-\left( 1+t \right)}{{{\left( 1+t \right)}^{3}}}}{{e}^{t}}dt \\
& I=2\int{\left( \dfrac{2}{{{\left( 1+t \right)}^{3}}}-\dfrac{\left( 1+t \right)}{{{\left( 1+t \right)}^{3}}} \right)}{{e}^{t}}dt \\
& I=2\int{\left( \dfrac{2}{{{\left( 1+t \right)}^{3}}}-\dfrac{1}{{{\left( 1+t \right)}^{2}}} \right)}{{e}^{t}}dt \\
\end{align}\]
Now, we have one formula, i.e. \[\int{{{e}^{x}}}\left( f\left( x \right)+f'\left( x \right) \right)dx={{e}^{x}}f\left( x \right)+c\]
That means, if sum of function and its differentiation written with ${{e}^{x}}$ then output will be product of function and ${{e}^{x}}$
In our case, \[I=2\int{\left( \dfrac{2}{{{\left( 1+t \right)}^{3}}}+\left( \dfrac{-1}{{{\left( 1+t \right)}^{2}}} \right) \right)}{{e}^{t}}dt\]
Here, function will be $\left( \dfrac{-1}{{{\left( 1+t \right)}^{2}}} \right)$ because it's differentiation will give $\left( \dfrac{2}{{{\left( 1+t \right)}^{3}}} \right)$ i.e.
\[\begin{align}
& \dfrac{d}{dt}\left( \dfrac{-1}{{{\left( 1+t \right)}^{2}}} \right)=-\dfrac{d}{dt}\left( {{\left( 1+t \right)}^{-2}} \right) \\
& \Rightarrow -\left( -2 \right){{\left( 1+t \right)}^{-2-1}} \\
& \Rightarrow 2{{\left( 1+t \right)}^{-3}} \\
& \Rightarrow \left( \dfrac{2}{{{\left( 1+t \right)}^{-3}}} \right) \\
\end{align}\]
Hence,
\[\begin{align}
& I=2\left( {{e}^{t}}\left( \dfrac{-1}{{{\left( 1+t \right)}^{2}}} \right) \right)+c \\
& I=\dfrac{-2{{e}^{{{\tan }^{2}}x}}}{{{\left( 1+{{\tan }^{2}}x \right)}^{2}}}+c \\
\end{align}\]
Therefore, this is the required answer.
Note:
During substitution like in this particular question ${{\tan }^{2}}x=t$ then we have to convert each term of x in the integral to term in t. Also, during implementing \[\int{{{e}^{x}}}\left( f\left( x \right)+f'\left( x \right) \right)dx={{e}^{x}}f\left( x \right)+c\] formula, always remember, there is addition of function and its derivative. If there is some other sign, then manipulate it to addition form. Otherwise, we will get wrong value of f(x) and final answer will be wrong.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

