
Evaluate $\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}} = $
1) $ - \dfrac{1}{2}$
2) $\dfrac{1}{2}$
3) $1$
4) $ - 1$
Answer
407.4k+ views
Hint: To find the sum of the given cosine functions, first we have to introduce a sine function, namely $2\sin \dfrac{\pi }{{11}}$ by multiplying and dividing at the same time. Then we are to operate the functions using the required trigonometric formulas. Finally we will get a form of equation that can be operated or cancelled to get the required solution.
Complete step-by-step solution:
To find, $\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}}$.
Now, multiplying and dividing the terms with $2\sin \dfrac{\pi }{{11}}$, we get,
$ = \dfrac{{2\sin \dfrac{\pi }{{11}}\left( {\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}}} \right)}}{{2\sin \dfrac{\pi }{{11}}}}$
Opening the brackets, we get,
$ = \dfrac{{2\sin \dfrac{\pi }{{11}}\cos \dfrac{\pi }{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{3\pi }}{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{5\pi }}{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{7\pi }}{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{9\pi }}{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}$
Now, we know, $2\sin \theta \cos \theta = \sin 2\theta $ and $2\sin \theta \cos \phi = \sin \left( {\theta + \phi } \right) - \sin \left( {\theta - \phi } \right)$.
Using these formulas in the terms of the above equation, gives us,
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{\pi }{{11}} = \sin \dfrac{{2\pi }}{{11}}$
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{{3\pi }}{{11}} = \sin \dfrac{{4\pi }}{{11}} - \sin \dfrac{{2\pi }}{{11}}$
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{{5\pi }}{{11}} = \sin \dfrac{{6\pi }}{{11}} - \sin \dfrac{{4\pi }}{{11}}$
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{{7\pi }}{{11}} = \sin \dfrac{{8\pi }}{{11}} - \sin \dfrac{{6\pi }}{{11}}$
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{{9\pi }}{{11}} = \sin \dfrac{{10\pi }}{{11}} - \sin \dfrac{{8\pi }}{{11}}$
Replacing, these terms in the given series, gives us,
$ = \dfrac{{\sin \dfrac{{2\pi }}{{11}} + \left( {\sin \dfrac{{4\pi }}{{11}} - \sin \dfrac{{2\pi }}{{11}}} \right) + \left( {\sin \dfrac{{6\pi }}{{11}} - \sin \dfrac{{4\pi }}{{11}}} \right) + \left( {\sin \dfrac{{8\pi }}{{11}} - \sin \dfrac{{6\pi }}{{11}}} \right) + \left( {\sin \dfrac{{10\pi }}{{11}} - \sin \dfrac{{8\pi }}{{11}}} \right)}}{{2\sin \dfrac{\pi }{{11}}}}$
Opening the brackets and simplifying, we get,
$ = \dfrac{{\sin \dfrac{{2\pi }}{{11}} + \sin \dfrac{{4\pi }}{{11}} - \sin \dfrac{{2\pi }}{{11}} + \sin \dfrac{{6\pi }}{{11}} - \sin \dfrac{{4\pi }}{{11}} + \sin \dfrac{{8\pi }}{{11}} - \sin \dfrac{{6\pi }}{{11}} + \sin \dfrac{{10\pi }}{{11}} - \sin \dfrac{{8\pi }}{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}$
We can see clearly that in the numerator all the terms get cancelled, except $\sin \dfrac{{10\pi }}{{11}}$.
So,
\[ = \dfrac{{\sin \dfrac{{10\pi }}{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}\]
Now, we know, $\sin \dfrac{{10\pi }}{{11}} = \sin \left( {\pi - \dfrac{\pi }{{11}}} \right)$
Using this property, we get,
$ = \dfrac{{\sin \left( {\pi - \dfrac{\pi }{{11}}} \right)}}{{2\sin \dfrac{\pi }{{11}}}}$
Now, we know, $\sin \left( {2\dfrac{\pi }{2} - \theta } \right) = \sin \theta $.
So, using this property, we can clearly say that, $\sin \left( {\pi - \dfrac{\pi }{{11}}} \right) = \sin \left( {2\dfrac{\pi }{2} - \dfrac{\pi }{{11}}} \right) = \sin \dfrac{\pi }{{11}}$.
Therefore, we can write as,
$ = \dfrac{{\sin \dfrac{\pi }{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}$
Now, cancelling the $\sin \dfrac{\pi }{{11}}$ in the numerator and denominator, we get,
$\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}} = \dfrac{1}{2}$
Therefore, the correct option is 2.
Note: Many a times, we may get confused and panic due to the complex angles in the cosine functions and feel that the solutions would be complex, but we had to just use simple and commonly used trigonometric properties to get the answer. Sometimes, we can also make calculation mistakes in solving the equations and using the trigonometric properties properly.
Complete step-by-step solution:
To find, $\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}}$.
Now, multiplying and dividing the terms with $2\sin \dfrac{\pi }{{11}}$, we get,
$ = \dfrac{{2\sin \dfrac{\pi }{{11}}\left( {\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}}} \right)}}{{2\sin \dfrac{\pi }{{11}}}}$
Opening the brackets, we get,
$ = \dfrac{{2\sin \dfrac{\pi }{{11}}\cos \dfrac{\pi }{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{3\pi }}{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{5\pi }}{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{7\pi }}{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{9\pi }}{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}$
Now, we know, $2\sin \theta \cos \theta = \sin 2\theta $ and $2\sin \theta \cos \phi = \sin \left( {\theta + \phi } \right) - \sin \left( {\theta - \phi } \right)$.
Using these formulas in the terms of the above equation, gives us,
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{\pi }{{11}} = \sin \dfrac{{2\pi }}{{11}}$
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{{3\pi }}{{11}} = \sin \dfrac{{4\pi }}{{11}} - \sin \dfrac{{2\pi }}{{11}}$
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{{5\pi }}{{11}} = \sin \dfrac{{6\pi }}{{11}} - \sin \dfrac{{4\pi }}{{11}}$
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{{7\pi }}{{11}} = \sin \dfrac{{8\pi }}{{11}} - \sin \dfrac{{6\pi }}{{11}}$
$2\sin \dfrac{\pi }{{11}}\cos \dfrac{{9\pi }}{{11}} = \sin \dfrac{{10\pi }}{{11}} - \sin \dfrac{{8\pi }}{{11}}$
Replacing, these terms in the given series, gives us,
$ = \dfrac{{\sin \dfrac{{2\pi }}{{11}} + \left( {\sin \dfrac{{4\pi }}{{11}} - \sin \dfrac{{2\pi }}{{11}}} \right) + \left( {\sin \dfrac{{6\pi }}{{11}} - \sin \dfrac{{4\pi }}{{11}}} \right) + \left( {\sin \dfrac{{8\pi }}{{11}} - \sin \dfrac{{6\pi }}{{11}}} \right) + \left( {\sin \dfrac{{10\pi }}{{11}} - \sin \dfrac{{8\pi }}{{11}}} \right)}}{{2\sin \dfrac{\pi }{{11}}}}$
Opening the brackets and simplifying, we get,
$ = \dfrac{{\sin \dfrac{{2\pi }}{{11}} + \sin \dfrac{{4\pi }}{{11}} - \sin \dfrac{{2\pi }}{{11}} + \sin \dfrac{{6\pi }}{{11}} - \sin \dfrac{{4\pi }}{{11}} + \sin \dfrac{{8\pi }}{{11}} - \sin \dfrac{{6\pi }}{{11}} + \sin \dfrac{{10\pi }}{{11}} - \sin \dfrac{{8\pi }}{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}$
We can see clearly that in the numerator all the terms get cancelled, except $\sin \dfrac{{10\pi }}{{11}}$.
So,
\[ = \dfrac{{\sin \dfrac{{10\pi }}{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}\]
Now, we know, $\sin \dfrac{{10\pi }}{{11}} = \sin \left( {\pi - \dfrac{\pi }{{11}}} \right)$
Using this property, we get,
$ = \dfrac{{\sin \left( {\pi - \dfrac{\pi }{{11}}} \right)}}{{2\sin \dfrac{\pi }{{11}}}}$
Now, we know, $\sin \left( {2\dfrac{\pi }{2} - \theta } \right) = \sin \theta $.
So, using this property, we can clearly say that, $\sin \left( {\pi - \dfrac{\pi }{{11}}} \right) = \sin \left( {2\dfrac{\pi }{2} - \dfrac{\pi }{{11}}} \right) = \sin \dfrac{\pi }{{11}}$.
Therefore, we can write as,
$ = \dfrac{{\sin \dfrac{\pi }{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}$
Now, cancelling the $\sin \dfrac{\pi }{{11}}$ in the numerator and denominator, we get,
$\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}} = \dfrac{1}{2}$
Therefore, the correct option is 2.
Note: Many a times, we may get confused and panic due to the complex angles in the cosine functions and feel that the solutions would be complex, but we had to just use simple and commonly used trigonometric properties to get the answer. Sometimes, we can also make calculation mistakes in solving the equations and using the trigonometric properties properly.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
