
Evaluate:
A. \[\dfrac{{\sin {{30}^ \circ } + \tan {{45}^ \circ } - \cos ec{{60}^ \circ }}}{{\sec {{30}^ \circ } + \cos {{60}^ \circ } + \cot {{45}^ \circ }}}\]
B. \[\dfrac{{5{{\cos }^2}{{60}^ \circ } + 4{{\sec }^2}{{30}^ \circ } - {{\tan }^2}{{45}^ \circ }}}{{{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{30}^ \circ }}}\]
Answer
584.4k+ views
Hint: These are some basic questions of trigonometry we will be using only one trigonometric formula \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] and we will also be needing values of \[\sin {30^ \circ } = \dfrac{1}{2},\tan {45^ \circ } = 1,\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\] to solve the following questions.
Complete step by step answer:
We must know some properties of trigonometry before attempting the question, those are as follows:
\[\begin{array}{l}
\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)\\
\tan \theta = \cot \left( {{{90}^ \circ } - \theta } \right)\\
\sec \theta = \cos ec\left( {{{90}^ \circ } - \theta } \right)
\end{array}\]
Also that
\[\begin{array}{l}
\cos ec\theta = \dfrac{1}{{\sin \theta }}\\
\sec \theta = \dfrac{1}{{\cos \theta }}\\
\cot \theta = \dfrac{1}{{\tan \theta }}
\end{array}\]
A. Clearly \[\cos ec{60^ \circ } = \dfrac{1}{{\sin {{60}^ \circ }}}\& \cos ec{60^ \circ } = \sec {30^ \circ }\]
Also \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\] therefore \[\cos ec{60^ \circ } = \sec {30^ \circ } = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{2}{{\sqrt 3 }}\]
Putting all of these in \[\dfrac{{\sin {{30}^ \circ } + \tan {{45}^ \circ } - \cos ec{{60}^ \circ }}}{{\sec {{30}^ \circ } + \cos {{60}^ \circ } + \cot {{45}^ \circ }}}\]
We will get
\[\begin{array}{l}
= \dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{2}{{\sqrt 3 }} + \dfrac{1}{2} + 1}}\\
= \dfrac{{\dfrac{{\sqrt 3 + 2\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{{4 + \sqrt 3 + 2\sqrt 3 }}{{2\sqrt 3 }}}}\\
= \dfrac{{\sqrt 3 + 2\sqrt 3 - 4}}{{4 + \sqrt 3 + 2\sqrt 3 }}\\
= \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}
\end{array}\]
By rationalising this we will get
\[\begin{array}{l}
\therefore \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}\\
= \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}} \times \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 - 4}}\\
= \dfrac{{{{\left( {3\sqrt 3 - 4} \right)}^2}}}{{{{\left( {3\sqrt 3 } \right)}^2} - {{\left( 4 \right)}^2}}}\\
= \dfrac{{27 - 24\sqrt 3 + 16}}{{27 - 16}}\\
= \dfrac{{43 - 24\sqrt 3 }}{{11}}
\end{array}\]
B. Here we are given the question \[\dfrac{{5{{\cos }^2}{{60}^ \circ } + 4{{\sec }^2}{{30}^ \circ } - {{\tan }^2}{{45}^ \circ }}}{{{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{30}^ \circ }}}\]
By solving we can get
\[\begin{array}{l}
= \dfrac{{5 \times {{\left( {\dfrac{1}{2}} \right)}^2} + 4 \times {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2} - {1^2}}}{1}\\
= \dfrac{5}{4} + 4 \times \dfrac{3}{4} - 1\\
= \dfrac{5}{4} + 3 - 1\\
= \dfrac{5}{4} + 2\\
= \dfrac{{13}}{4}
\end{array}\]
Note: It must be noted that \[\dfrac{1}{{\sin A}} = \cos ecA\] also many students usually put \[{{{\sin }^2}A + {{\cos }^2}A}\] in place of 1 which makes the calculation much longer.Just like \[{{{\sin }^2}A + {{\cos }^2}A = 1}\] we also have \[{\sec ^2}A - {\tan ^2}A = 1\& \cos e{c^2}A - {\cot ^2}A = 1\] Also note that \[\sin \theta = \dfrac{p}{h},\cos \theta = \dfrac{b}{h},\tan \theta = \dfrac{p}{b},\cos ec\theta = \dfrac{h}{p},\sec \theta = \dfrac{h}{b},\cot \theta = \dfrac{b}{p}\] where p, b, h represents perpendicular, base and height of a right angled triangle respectively.
Complete step by step answer:
We must know some properties of trigonometry before attempting the question, those are as follows:
\[\begin{array}{l}
\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)\\
\tan \theta = \cot \left( {{{90}^ \circ } - \theta } \right)\\
\sec \theta = \cos ec\left( {{{90}^ \circ } - \theta } \right)
\end{array}\]
Also that
\[\begin{array}{l}
\cos ec\theta = \dfrac{1}{{\sin \theta }}\\
\sec \theta = \dfrac{1}{{\cos \theta }}\\
\cot \theta = \dfrac{1}{{\tan \theta }}
\end{array}\]
A. Clearly \[\cos ec{60^ \circ } = \dfrac{1}{{\sin {{60}^ \circ }}}\& \cos ec{60^ \circ } = \sec {30^ \circ }\]
Also \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\] therefore \[\cos ec{60^ \circ } = \sec {30^ \circ } = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{2}{{\sqrt 3 }}\]
Putting all of these in \[\dfrac{{\sin {{30}^ \circ } + \tan {{45}^ \circ } - \cos ec{{60}^ \circ }}}{{\sec {{30}^ \circ } + \cos {{60}^ \circ } + \cot {{45}^ \circ }}}\]
We will get
\[\begin{array}{l}
= \dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{2}{{\sqrt 3 }} + \dfrac{1}{2} + 1}}\\
= \dfrac{{\dfrac{{\sqrt 3 + 2\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{{4 + \sqrt 3 + 2\sqrt 3 }}{{2\sqrt 3 }}}}\\
= \dfrac{{\sqrt 3 + 2\sqrt 3 - 4}}{{4 + \sqrt 3 + 2\sqrt 3 }}\\
= \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}
\end{array}\]
By rationalising this we will get
\[\begin{array}{l}
\therefore \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}\\
= \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}} \times \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 - 4}}\\
= \dfrac{{{{\left( {3\sqrt 3 - 4} \right)}^2}}}{{{{\left( {3\sqrt 3 } \right)}^2} - {{\left( 4 \right)}^2}}}\\
= \dfrac{{27 - 24\sqrt 3 + 16}}{{27 - 16}}\\
= \dfrac{{43 - 24\sqrt 3 }}{{11}}
\end{array}\]
B. Here we are given the question \[\dfrac{{5{{\cos }^2}{{60}^ \circ } + 4{{\sec }^2}{{30}^ \circ } - {{\tan }^2}{{45}^ \circ }}}{{{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{30}^ \circ }}}\]
By solving we can get
\[\begin{array}{l}
= \dfrac{{5 \times {{\left( {\dfrac{1}{2}} \right)}^2} + 4 \times {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2} - {1^2}}}{1}\\
= \dfrac{5}{4} + 4 \times \dfrac{3}{4} - 1\\
= \dfrac{5}{4} + 3 - 1\\
= \dfrac{5}{4} + 2\\
= \dfrac{{13}}{4}
\end{array}\]
Note: It must be noted that \[\dfrac{1}{{\sin A}} = \cos ecA\] also many students usually put \[{{{\sin }^2}A + {{\cos }^2}A}\] in place of 1 which makes the calculation much longer.Just like \[{{{\sin }^2}A + {{\cos }^2}A = 1}\] we also have \[{\sec ^2}A - {\tan ^2}A = 1\& \cos e{c^2}A - {\cot ^2}A = 1\] Also note that \[\sin \theta = \dfrac{p}{h},\cos \theta = \dfrac{b}{h},\tan \theta = \dfrac{p}{b},\cos ec\theta = \dfrac{h}{p},\sec \theta = \dfrac{h}{b},\cot \theta = \dfrac{b}{p}\] where p, b, h represents perpendicular, base and height of a right angled triangle respectively.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

