
Evaluate $1.2 + 2.3 + 3.4 + ....... + n(n + 1) = \dfrac{n}{3}(n + 1)(n + 2)$.
Answer
507.9k+ views
Hint:We know that $\sum\limits_{x = 1}^n {x = \dfrac{{n(n + 1)}}{2}}\,,\,\sum\limits_{x = 1}^n {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$.So we are given $1.2 + 2.3 + 3.4 + ....... + n(n + 1)$.So its general form is $n(n + 1)$.And we need to find $\sum\limits_{n = 1}^n n (n + 1)$ that is $\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $.Using these formulas and prove that $1.2 + 2.3 + 3.4 + ....... + n(n + 1) = \dfrac{n}{3}(n + 1)(n + 2)$.
Complete step-by-step answer:
Here we are given that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$
So we can write this as
$\sum\limits_{n = 1}^n n (n + 1)$
So upon expanding by putting $n = 1,2,3,4,.......,n$, we get
$1(1 + 1) + 2(2 + 1),,,,,,,,,, + n(n + 1)$
$1.2 + 2.3 + 3.4 + .......... + n(n + 1)$
So we get the value we need to find, so we can write that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$ as $\sum\limits_{n = 1}^n n (n + 1)$
Now opening the bracket by multiplying the terms
$\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
So from (1) and (2), we get that
$\sum\limits_{i = 1}^n {i = \dfrac{{n(n + 1)}}{2}} $ and $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
So we can expand by the above formula, we get that
So $\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
$ = \dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}$
As $\sum\limits_{x = 1}^n {x = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{x = 1}^n {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
Now upon simplification, we can take $\dfrac{{n(n + 1)}}{2}$ common
We get
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1}}{3} + 1} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1 + 3}}{3}} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 4}}{3}} \right)$
Now taking $2$ common from $2n + 4$, we get
$ = \dfrac{{2n(n + 1)(n + 2)}}{6}$
$ = \dfrac{{n(n + 1)(n + 2)}}{3}$
Hence proved.
Note:We know that when $1 + 2 + 3 + 4 + ....... + n$ is given, then its value is equal to $\dfrac{{n(n + 1)}}{2}$.This can be proved by using AP as we know that $1,2,3,4,.........,n$ are in AP with the common difference $d=1$ and first term $a=1$.So the sum of nth term is given by $ = \dfrac{n}{2}\left( {2a + (n - 1)d} \right)$,Here $a = 1,d = 1$
Sum$ = \dfrac{n}{2}\left( {2 + (n - 1)} \right)$$ = \dfrac{{n(n + 1)}}{2}$
Students should remember these formulas for solving the questions.
$\sum\limits_{i = 1}^n {i = 1 + 2 + 3 + 4 + ........ + n = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{i = 1}^n {{i^2}} = {1^2} + {2^2} + {3^2} + ....... + {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = {1^3} + {2^3} + {3^3} + ....... + {n^3} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$.
Complete step-by-step answer:
Here we are given that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$
So we can write this as
$\sum\limits_{n = 1}^n n (n + 1)$
So upon expanding by putting $n = 1,2,3,4,.......,n$, we get
$1(1 + 1) + 2(2 + 1),,,,,,,,,, + n(n + 1)$
$1.2 + 2.3 + 3.4 + .......... + n(n + 1)$
So we get the value we need to find, so we can write that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$ as $\sum\limits_{n = 1}^n n (n + 1)$
Now opening the bracket by multiplying the terms
$\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
So from (1) and (2), we get that
$\sum\limits_{i = 1}^n {i = \dfrac{{n(n + 1)}}{2}} $ and $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
So we can expand by the above formula, we get that
So $\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
$ = \dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}$
As $\sum\limits_{x = 1}^n {x = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{x = 1}^n {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
Now upon simplification, we can take $\dfrac{{n(n + 1)}}{2}$ common
We get
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1}}{3} + 1} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1 + 3}}{3}} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 4}}{3}} \right)$
Now taking $2$ common from $2n + 4$, we get
$ = \dfrac{{2n(n + 1)(n + 2)}}{6}$
$ = \dfrac{{n(n + 1)(n + 2)}}{3}$
Hence proved.
Note:We know that when $1 + 2 + 3 + 4 + ....... + n$ is given, then its value is equal to $\dfrac{{n(n + 1)}}{2}$.This can be proved by using AP as we know that $1,2,3,4,.........,n$ are in AP with the common difference $d=1$ and first term $a=1$.So the sum of nth term is given by $ = \dfrac{n}{2}\left( {2a + (n - 1)d} \right)$,Here $a = 1,d = 1$
Sum$ = \dfrac{n}{2}\left( {2 + (n - 1)} \right)$$ = \dfrac{{n(n + 1)}}{2}$
Students should remember these formulas for solving the questions.
$\sum\limits_{i = 1}^n {i = 1 + 2 + 3 + 4 + ........ + n = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{i = 1}^n {{i^2}} = {1^2} + {2^2} + {3^2} + ....... + {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = {1^3} + {2^3} + {3^3} + ....... + {n^3} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
