
Evaluate $1.2 + 2.3 + 3.4 + ....... + n(n + 1) = \dfrac{n}{3}(n + 1)(n + 2)$.
Answer
588k+ views
Hint:We know that $\sum\limits_{x = 1}^n {x = \dfrac{{n(n + 1)}}{2}}\,,\,\sum\limits_{x = 1}^n {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$.So we are given $1.2 + 2.3 + 3.4 + ....... + n(n + 1)$.So its general form is $n(n + 1)$.And we need to find $\sum\limits_{n = 1}^n n (n + 1)$ that is $\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $.Using these formulas and prove that $1.2 + 2.3 + 3.4 + ....... + n(n + 1) = \dfrac{n}{3}(n + 1)(n + 2)$.
Complete step-by-step answer:
Here we are given that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$
So we can write this as
$\sum\limits_{n = 1}^n n (n + 1)$
So upon expanding by putting $n = 1,2,3,4,.......,n$, we get
$1(1 + 1) + 2(2 + 1),,,,,,,,,, + n(n + 1)$
$1.2 + 2.3 + 3.4 + .......... + n(n + 1)$
So we get the value we need to find, so we can write that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$ as $\sum\limits_{n = 1}^n n (n + 1)$
Now opening the bracket by multiplying the terms
$\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
So from (1) and (2), we get that
$\sum\limits_{i = 1}^n {i = \dfrac{{n(n + 1)}}{2}} $ and $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
So we can expand by the above formula, we get that
So $\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
$ = \dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}$
As $\sum\limits_{x = 1}^n {x = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{x = 1}^n {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
Now upon simplification, we can take $\dfrac{{n(n + 1)}}{2}$ common
We get
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1}}{3} + 1} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1 + 3}}{3}} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 4}}{3}} \right)$
Now taking $2$ common from $2n + 4$, we get
$ = \dfrac{{2n(n + 1)(n + 2)}}{6}$
$ = \dfrac{{n(n + 1)(n + 2)}}{3}$
Hence proved.
Note:We know that when $1 + 2 + 3 + 4 + ....... + n$ is given, then its value is equal to $\dfrac{{n(n + 1)}}{2}$.This can be proved by using AP as we know that $1,2,3,4,.........,n$ are in AP with the common difference $d=1$ and first term $a=1$.So the sum of nth term is given by $ = \dfrac{n}{2}\left( {2a + (n - 1)d} \right)$,Here $a = 1,d = 1$
Sum$ = \dfrac{n}{2}\left( {2 + (n - 1)} \right)$$ = \dfrac{{n(n + 1)}}{2}$
Students should remember these formulas for solving the questions.
$\sum\limits_{i = 1}^n {i = 1 + 2 + 3 + 4 + ........ + n = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{i = 1}^n {{i^2}} = {1^2} + {2^2} + {3^2} + ....... + {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = {1^3} + {2^3} + {3^3} + ....... + {n^3} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$.
Complete step-by-step answer:
Here we are given that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$
So we can write this as
$\sum\limits_{n = 1}^n n (n + 1)$
So upon expanding by putting $n = 1,2,3,4,.......,n$, we get
$1(1 + 1) + 2(2 + 1),,,,,,,,,, + n(n + 1)$
$1.2 + 2.3 + 3.4 + .......... + n(n + 1)$
So we get the value we need to find, so we can write that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$ as $\sum\limits_{n = 1}^n n (n + 1)$
Now opening the bracket by multiplying the terms
$\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
So from (1) and (2), we get that
$\sum\limits_{i = 1}^n {i = \dfrac{{n(n + 1)}}{2}} $ and $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
So we can expand by the above formula, we get that
So $\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
$ = \dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}$
As $\sum\limits_{x = 1}^n {x = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{x = 1}^n {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
Now upon simplification, we can take $\dfrac{{n(n + 1)}}{2}$ common
We get
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1}}{3} + 1} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1 + 3}}{3}} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 4}}{3}} \right)$
Now taking $2$ common from $2n + 4$, we get
$ = \dfrac{{2n(n + 1)(n + 2)}}{6}$
$ = \dfrac{{n(n + 1)(n + 2)}}{3}$
Hence proved.
Note:We know that when $1 + 2 + 3 + 4 + ....... + n$ is given, then its value is equal to $\dfrac{{n(n + 1)}}{2}$.This can be proved by using AP as we know that $1,2,3,4,.........,n$ are in AP with the common difference $d=1$ and first term $a=1$.So the sum of nth term is given by $ = \dfrac{n}{2}\left( {2a + (n - 1)d} \right)$,Here $a = 1,d = 1$
Sum$ = \dfrac{n}{2}\left( {2 + (n - 1)} \right)$$ = \dfrac{{n(n + 1)}}{2}$
Students should remember these formulas for solving the questions.
$\sum\limits_{i = 1}^n {i = 1 + 2 + 3 + 4 + ........ + n = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{i = 1}^n {{i^2}} = {1^2} + {2^2} + {3^2} + ....... + {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = {1^3} + {2^3} + {3^3} + ....... + {n^3} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

