
Evaluate $1.2 + 2.3 + 3.4 + ....... + n(n + 1) = \dfrac{n}{3}(n + 1)(n + 2)$.
Answer
575.1k+ views
Hint:We know that $\sum\limits_{x = 1}^n {x = \dfrac{{n(n + 1)}}{2}}\,,\,\sum\limits_{x = 1}^n {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$.So we are given $1.2 + 2.3 + 3.4 + ....... + n(n + 1)$.So its general form is $n(n + 1)$.And we need to find $\sum\limits_{n = 1}^n n (n + 1)$ that is $\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $.Using these formulas and prove that $1.2 + 2.3 + 3.4 + ....... + n(n + 1) = \dfrac{n}{3}(n + 1)(n + 2)$.
Complete step-by-step answer:
Here we are given that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$
So we can write this as
$\sum\limits_{n = 1}^n n (n + 1)$
So upon expanding by putting $n = 1,2,3,4,.......,n$, we get
$1(1 + 1) + 2(2 + 1),,,,,,,,,, + n(n + 1)$
$1.2 + 2.3 + 3.4 + .......... + n(n + 1)$
So we get the value we need to find, so we can write that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$ as $\sum\limits_{n = 1}^n n (n + 1)$
Now opening the bracket by multiplying the terms
$\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
So from (1) and (2), we get that
$\sum\limits_{i = 1}^n {i = \dfrac{{n(n + 1)}}{2}} $ and $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
So we can expand by the above formula, we get that
So $\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
$ = \dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}$
As $\sum\limits_{x = 1}^n {x = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{x = 1}^n {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
Now upon simplification, we can take $\dfrac{{n(n + 1)}}{2}$ common
We get
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1}}{3} + 1} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1 + 3}}{3}} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 4}}{3}} \right)$
Now taking $2$ common from $2n + 4$, we get
$ = \dfrac{{2n(n + 1)(n + 2)}}{6}$
$ = \dfrac{{n(n + 1)(n + 2)}}{3}$
Hence proved.
Note:We know that when $1 + 2 + 3 + 4 + ....... + n$ is given, then its value is equal to $\dfrac{{n(n + 1)}}{2}$.This can be proved by using AP as we know that $1,2,3,4,.........,n$ are in AP with the common difference $d=1$ and first term $a=1$.So the sum of nth term is given by $ = \dfrac{n}{2}\left( {2a + (n - 1)d} \right)$,Here $a = 1,d = 1$
Sum$ = \dfrac{n}{2}\left( {2 + (n - 1)} \right)$$ = \dfrac{{n(n + 1)}}{2}$
Students should remember these formulas for solving the questions.
$\sum\limits_{i = 1}^n {i = 1 + 2 + 3 + 4 + ........ + n = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{i = 1}^n {{i^2}} = {1^2} + {2^2} + {3^2} + ....... + {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = {1^3} + {2^3} + {3^3} + ....... + {n^3} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$.
Complete step-by-step answer:
Here we are given that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$
So we can write this as
$\sum\limits_{n = 1}^n n (n + 1)$
So upon expanding by putting $n = 1,2,3,4,.......,n$, we get
$1(1 + 1) + 2(2 + 1),,,,,,,,,, + n(n + 1)$
$1.2 + 2.3 + 3.4 + .......... + n(n + 1)$
So we get the value we need to find, so we can write that
$1.2 + 2.3 + 3.4 + ....... + n(n + 1)$ as $\sum\limits_{n = 1}^n n (n + 1)$
Now opening the bracket by multiplying the terms
$\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
So from (1) and (2), we get that
$\sum\limits_{i = 1}^n {i = \dfrac{{n(n + 1)}}{2}} $ and $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
So we can expand by the above formula, we get that
So $\sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n n $
$ = \dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}$
As $\sum\limits_{x = 1}^n {x = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{x = 1}^n {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
Now upon simplification, we can take $\dfrac{{n(n + 1)}}{2}$ common
We get
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1}}{3} + 1} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 1 + 3}}{3}} \right)$
$ = \dfrac{{n(n + 1)}}{2}\left( {\dfrac{{2n + 4}}{3}} \right)$
Now taking $2$ common from $2n + 4$, we get
$ = \dfrac{{2n(n + 1)(n + 2)}}{6}$
$ = \dfrac{{n(n + 1)(n + 2)}}{3}$
Hence proved.
Note:We know that when $1 + 2 + 3 + 4 + ....... + n$ is given, then its value is equal to $\dfrac{{n(n + 1)}}{2}$.This can be proved by using AP as we know that $1,2,3,4,.........,n$ are in AP with the common difference $d=1$ and first term $a=1$.So the sum of nth term is given by $ = \dfrac{n}{2}\left( {2a + (n - 1)d} \right)$,Here $a = 1,d = 1$
Sum$ = \dfrac{n}{2}\left( {2 + (n - 1)} \right)$$ = \dfrac{{n(n + 1)}}{2}$
Students should remember these formulas for solving the questions.
$\sum\limits_{i = 1}^n {i = 1 + 2 + 3 + 4 + ........ + n = \dfrac{{n(n + 1)}}{2}} $
$\sum\limits_{i = 1}^n {{i^2}} = {1^2} + {2^2} + {3^2} + ....... + {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = {1^3} + {2^3} + {3^3} + ....... + {n^3} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

