
How is the equation of a standing wave in a string fixed at both ends?
Answer
500.1k+ views
Hint: First let us see what standing wave is-
A standing wave sometimes referred to as a stationary wave, is a wave in physics that oscillates in time but whose overall amplitude profile does not shift in space.
In any point in space, the peak amplitude of the wave oscillations is consistent with time and the oscillations are in phase in various points in the motion.
Complete step by step solution:
A standing wave pattern is a vibration pattern produced within a medium where the source’s vibrational frequency induces reflection waves from one end of the medium to interact with the source’s incident waves. Only at particular frequencies of vibration are certain patterns produced within the medium.
The equation for standing wave fixed at both ends of a string is given by-
We can also write it as
The standard wave equation is given by –
Now comparing the equations for standing wave with the standard wave equation we get-
Amplitude value
Direction of wave
Frequency
Phase constant
The wavelengths of the normal modes for a string of length fixed at both ends are
Here nodes occur when
is the normal mode of oscillation
The natural frequencies are
Here is also called the fundamental frequency.
Additional information:
Standing waves are synonymous with resonance all the time. The resonance of the resulting vibrations can be identified by a drastic rise in amplitude. Compared to moving waves of the same amplitude, it is relatively effortless to produce standing waves.
Note: For the string fixed at both ends and . The amplitude must be zero at the ends and the argument of sin must be zero. Also the antinodes have maximum amplitude at and the nodes have zero amplitude.
A standing wave sometimes referred to as a stationary wave, is a wave in physics that oscillates in time but whose overall amplitude profile does not shift in space.
In any point in space, the peak amplitude of the wave oscillations is consistent with time and the oscillations are in phase in various points in the motion.
Complete step by step solution:
A standing wave pattern is a vibration pattern produced within a medium where the source’s vibrational frequency induces reflection waves from one end of the medium to interact with the source’s incident waves. Only at particular frequencies of vibration are certain patterns produced within the medium.
The equation for standing wave fixed at both ends of a string is given by-
We can also write it as
The standard wave equation is given by –
Now comparing the equations for standing wave with the standard wave equation we get-
Amplitude value
Direction of wave
Frequency
Phase constant
The wavelengths of the normal modes for a string of length
Here nodes occur when
The natural frequencies are
Here
Additional information:
Standing waves are synonymous with resonance all the time. The resonance of the resulting vibrations can be identified by a drastic rise in amplitude. Compared to moving waves of the same amplitude, it is relatively effortless to produce standing waves.
Note: For the string fixed at both ends
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
