
What is the e/m value of an electron?
\[{\text{A}}{\text{. }}1.6 \times {10^{ 11}}\] C/kg
\[{\text{B}}{\text{. }}1.6 \times {10^{ - 19}}\] C/kg
\[{\text{C}}{\text{. }}1.759 \times {10^{11}}\] C/kg
\[{\text{D}}{\text{. 901}} \times {10^{ - 31}}\] C/kg
Answer
591.6k+ views
Hint: Here, we will proceed by defining the term electron. Then, we will discuss the mass comparison of electrons with that of an atom. Finally, we will divide the value of the charge to that of the mass of any electron.
Complete step-by-step answer:
Electron, which is the lightest known stable subatomic particle. It has a negative charge against it.
${\left( {\dfrac{1}{{1836}}} \right)^{{\text{th}}}}$ mass of the mass of a proton gives the rest mass of an electron. Therefore, an electron is considered almost massless compared to a proton or a neutron, and the mass of an electron is not included in the measurement of an atom's mass number.
Through electrical conductors, the current flow is the outcome of transferring electrons independently from atom to atom, and usually from negative to positive electric poles. Current also happens in semiconductor materials as a movement of electrons. Within a semiconductor an electron deficient atom is considered a hole. Holes "jump" usually from the positive to the negative electric poles.
As we know that the charge on any electron is $1.6 \times {10^{ - 19}}$ coulomb i.e., e = $1.6 \times {10^{ - 19}}$ C
Also the mass of an electron is $9.1 \times {10^{ - 31}}$ kg i.e., m = $9.1 \times {10^{ - 31}}$ kg
The charge to mass ratio can be easily obtained by dividing the value of the charge on any electron by the mass of any electron
$
\dfrac{{\text{e}}}{{\text{m}}} = \dfrac{{1.6 \times {{10}^{ - 19}}}}{{9.1 \times {{10}^{ - 31}}}} \\
\Rightarrow \dfrac{{\text{e}}}{{\text{m}}} = \dfrac{{1.6}}{{9.1}} \times {10^{ - 19}} \times {10^{31}} \\
\Rightarrow \dfrac{{\text{e}}}{{\text{m}}} = 0.1759 \times {10^{ - 19 + 31}} \\
\Rightarrow \dfrac{{\text{e}}}{{\text{m}}} = 0.1759 \times {10^{12}} \\
\Rightarrow \dfrac{{\text{e}}}{{\text{m}}} = 1.759 \times {10^{11}} \\
$
Therefore, the value of the charge to mass ratio for any electron (i.e., e/m) is $1.759 \times {10^{11}}$ C/kg
Hence, option C is correct.
Note: In this particular problem, while finding the value of e/m we have neglected the negative sign corresponding to the charge of an electron (i.e., we are just considering the magnitude of the charge of an electron). Any atom consists of three particles including electrons, protons and neutrons.
Complete step-by-step answer:
Electron, which is the lightest known stable subatomic particle. It has a negative charge against it.
${\left( {\dfrac{1}{{1836}}} \right)^{{\text{th}}}}$ mass of the mass of a proton gives the rest mass of an electron. Therefore, an electron is considered almost massless compared to a proton or a neutron, and the mass of an electron is not included in the measurement of an atom's mass number.
Through electrical conductors, the current flow is the outcome of transferring electrons independently from atom to atom, and usually from negative to positive electric poles. Current also happens in semiconductor materials as a movement of electrons. Within a semiconductor an electron deficient atom is considered a hole. Holes "jump" usually from the positive to the negative electric poles.
As we know that the charge on any electron is $1.6 \times {10^{ - 19}}$ coulomb i.e., e = $1.6 \times {10^{ - 19}}$ C
Also the mass of an electron is $9.1 \times {10^{ - 31}}$ kg i.e., m = $9.1 \times {10^{ - 31}}$ kg
The charge to mass ratio can be easily obtained by dividing the value of the charge on any electron by the mass of any electron
$
\dfrac{{\text{e}}}{{\text{m}}} = \dfrac{{1.6 \times {{10}^{ - 19}}}}{{9.1 \times {{10}^{ - 31}}}} \\
\Rightarrow \dfrac{{\text{e}}}{{\text{m}}} = \dfrac{{1.6}}{{9.1}} \times {10^{ - 19}} \times {10^{31}} \\
\Rightarrow \dfrac{{\text{e}}}{{\text{m}}} = 0.1759 \times {10^{ - 19 + 31}} \\
\Rightarrow \dfrac{{\text{e}}}{{\text{m}}} = 0.1759 \times {10^{12}} \\
\Rightarrow \dfrac{{\text{e}}}{{\text{m}}} = 1.759 \times {10^{11}} \\
$
Therefore, the value of the charge to mass ratio for any electron (i.e., e/m) is $1.759 \times {10^{11}}$ C/kg
Hence, option C is correct.
Note: In this particular problem, while finding the value of e/m we have neglected the negative sign corresponding to the charge of an electron (i.e., we are just considering the magnitude of the charge of an electron). Any atom consists of three particles including electrons, protons and neutrons.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

