
Eccentric angle of a point on the ellipse ${{\text{x}}^2} + 3{{\text{y}}^2} = 6$ at a distance $\sqrt 3 $ units from the centre of the ellipse is
A .\[\dfrac{{5\pi }}{3}\]
B. \[\dfrac{\pi }{3}\]
C .\[\dfrac{{3\pi }}{4}\]
D .\[\dfrac{{2\pi }}{3}\]
Answer
602.7k+ views
Hint: Proceed the solution of this question by using general parametric coordinates of any point P on ellipse which is (acosθ, bsinθ) then find the distance between center (which is origin) and point P and equalise it with the given distance in the question.
Complete step-by-step answer:
In the question, given equation of ellipse is ${{\text{x}}^2} + 3{{\text{y}}^2} = 6$
On comparing it with standard equation of ellipse which is $\dfrac{{{{\text{x}}^2}}}{{{{\text{a}}^2}}} + \dfrac{{{{\text{y}}^2}}}{{{{\text{b}}^2}}} = 1$
${\text{Equation of given ellipse is }}{{\text{x}}^2} + 3{{\text{y}}^2} = 6$
Divide by 6 on both side to convert it into standard form
$\dfrac{{{{\text{x}}^2}}}{6} + \dfrac{{{{\text{y}}^2}}}{2} = 1$
so on comparing with standard equation of ellipse
a = $\sqrt 6 $ and b = $\sqrt 2 $
We know that, the parametric coordinate of any point P on the ellipse is
(x=acosθ and y=bsinθ); Where θ is the eccentric angle.
So the parametric coordinate of point P is (√6cosθ, √2sinθ) ($\because $a = $\sqrt 6 $ and b = $\sqrt 2 $) Here θ be the eccentric angle of the point P.
The center of the ellipse is at the point of origin (0,0)
It is given that
$\therefore {\text{OP = }}\sqrt 3 $
So to find length of OP,
Let the coordinates of point O $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ and P $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$
So Distance between two points O and P will be = \[\sqrt {{{\left( {{{\text{x}}_2} - {{\text{x}}_1}} \right)}^2} + {{\left( {{{\text{y}}_2} - {{\text{y}}_1}} \right)}^2}} \]
O= (0, 0), P= (√6cosθ, √2sinθ)
Here, \[{{\text{x}}_1} = 0,{{\text{y}}_1} = 0,{{\text{x}}_2} = \sqrt 6 {\text{cos}}\theta ,{{\text{y}}_2} = \sqrt 2 {\text{sin}}\theta \]
So length of side OP = $\sqrt {{{\left( {\sqrt 6 \cos \theta - 0} \right)}^2} + {{\left( {\sqrt 2 \sin \theta - 0} \right)}^2}} {\text{ = }}\sqrt {6{{\cos }^2}\theta + 2{{\sin }^2}\theta } {\text{ }}$
but It is given that ${\text{OP = }}\sqrt 3 $
${\text{so, }}\sqrt {6{{\cos }^2}\theta + 2{{\sin }^2}\theta } {\text{ = }}\sqrt 3 $
On squaring both side
$ \Rightarrow 6{\cos ^2}\theta + 2{\sin ^2}\theta {\text{ = 3}}$
$ \Rightarrow 6(1 - {\text{si}}{{\text{n}}^2}\theta ) + 2{\sin ^2}\theta {\text{ = 3}}$
$ \Rightarrow 6 - 6{\text{si}}{{\text{n}}^2}\theta + 2{\sin ^2}\theta {\text{ = 3}}$
$ \Rightarrow 6 - 3 = 6{\text{si}}{{\text{n}}^2}\theta - 2{\sin ^2}\theta $
$ \Rightarrow \dfrac{3}{4} = {\text{si}}{{\text{n}}^2}\theta $
$ \Rightarrow {\text{sin}}\theta = \pm \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow {\text{sin}}\theta = + \dfrac{{\sqrt 3 }}{2}{\text{ or sin}}\theta = - \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \theta = {\sin ^{ - 1}}\left( { + \dfrac{{\sqrt 3 }}{2}{\text{ }}} \right){\text{or }}\theta = {\sin ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$
$ \Rightarrow \theta = \dfrac{\pi }{3}{\text{,}}\dfrac{{2\pi }}{3}{\text{ or }}\theta = \dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$
$ \Rightarrow {\text{so, eccentric angle }}\theta = \dfrac{{3\pi }}{4}{\text{ }}$given in option C
Hence, Option A, B and D all are correct.
Note: In such types of particular questions, where we have assumed Parametric coordinates (trigonometric function of eccentric angles θ). In the solution we got 4 values of θ. This happens because we can assume 4 such values in each quadrant. Therefore, exactly we got 4 such values of θ in each quadrant. These 4 values of θ will also be a mirror image of each other about the x and y axis correspondingly.
Complete step-by-step answer:
In the question, given equation of ellipse is ${{\text{x}}^2} + 3{{\text{y}}^2} = 6$
On comparing it with standard equation of ellipse which is $\dfrac{{{{\text{x}}^2}}}{{{{\text{a}}^2}}} + \dfrac{{{{\text{y}}^2}}}{{{{\text{b}}^2}}} = 1$
${\text{Equation of given ellipse is }}{{\text{x}}^2} + 3{{\text{y}}^2} = 6$
Divide by 6 on both side to convert it into standard form
$\dfrac{{{{\text{x}}^2}}}{6} + \dfrac{{{{\text{y}}^2}}}{2} = 1$
so on comparing with standard equation of ellipse
a = $\sqrt 6 $ and b = $\sqrt 2 $
We know that, the parametric coordinate of any point P on the ellipse is
(x=acosθ and y=bsinθ); Where θ is the eccentric angle.
So the parametric coordinate of point P is (√6cosθ, √2sinθ) ($\because $a = $\sqrt 6 $ and b = $\sqrt 2 $) Here θ be the eccentric angle of the point P.
The center of the ellipse is at the point of origin (0,0)
It is given that
$\therefore {\text{OP = }}\sqrt 3 $
So to find length of OP,
Let the coordinates of point O $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ and P $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$
So Distance between two points O and P will be = \[\sqrt {{{\left( {{{\text{x}}_2} - {{\text{x}}_1}} \right)}^2} + {{\left( {{{\text{y}}_2} - {{\text{y}}_1}} \right)}^2}} \]
O= (0, 0), P= (√6cosθ, √2sinθ)
Here, \[{{\text{x}}_1} = 0,{{\text{y}}_1} = 0,{{\text{x}}_2} = \sqrt 6 {\text{cos}}\theta ,{{\text{y}}_2} = \sqrt 2 {\text{sin}}\theta \]
So length of side OP = $\sqrt {{{\left( {\sqrt 6 \cos \theta - 0} \right)}^2} + {{\left( {\sqrt 2 \sin \theta - 0} \right)}^2}} {\text{ = }}\sqrt {6{{\cos }^2}\theta + 2{{\sin }^2}\theta } {\text{ }}$
but It is given that ${\text{OP = }}\sqrt 3 $
${\text{so, }}\sqrt {6{{\cos }^2}\theta + 2{{\sin }^2}\theta } {\text{ = }}\sqrt 3 $
On squaring both side
$ \Rightarrow 6{\cos ^2}\theta + 2{\sin ^2}\theta {\text{ = 3}}$
$ \Rightarrow 6(1 - {\text{si}}{{\text{n}}^2}\theta ) + 2{\sin ^2}\theta {\text{ = 3}}$
$ \Rightarrow 6 - 6{\text{si}}{{\text{n}}^2}\theta + 2{\sin ^2}\theta {\text{ = 3}}$
$ \Rightarrow 6 - 3 = 6{\text{si}}{{\text{n}}^2}\theta - 2{\sin ^2}\theta $
$ \Rightarrow \dfrac{3}{4} = {\text{si}}{{\text{n}}^2}\theta $
$ \Rightarrow {\text{sin}}\theta = \pm \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow {\text{sin}}\theta = + \dfrac{{\sqrt 3 }}{2}{\text{ or sin}}\theta = - \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \theta = {\sin ^{ - 1}}\left( { + \dfrac{{\sqrt 3 }}{2}{\text{ }}} \right){\text{or }}\theta = {\sin ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$
$ \Rightarrow \theta = \dfrac{\pi }{3}{\text{,}}\dfrac{{2\pi }}{3}{\text{ or }}\theta = \dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$
$ \Rightarrow {\text{so, eccentric angle }}\theta = \dfrac{{3\pi }}{4}{\text{ }}$given in option C
Hence, Option A, B and D all are correct.
Note: In such types of particular questions, where we have assumed Parametric coordinates (trigonometric function of eccentric angles θ). In the solution we got 4 values of θ. This happens because we can assume 4 such values in each quadrant. Therefore, exactly we got 4 such values of θ in each quadrant. These 4 values of θ will also be a mirror image of each other about the x and y axis correspondingly.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

