
How does the bond energy for the formation of NaCl(s) take place?
Answer
537.9k+ views
Hint: In the above question, we have to find out how the bond energy for the formation of NaCl takes place. We have to write a series of balanced chemical equations along with heat released in each step to get the desired lattice enthalpy.
Complete step by step solution:
Sodium is metal and chlorine is a diatomic gas in room temperature and pressure but in NaCl, sodium and chlorine ions are present. So, we have to basically find out the following reaction:
$ {\text{Na(s)}}\xrightarrow{{{\text{sublimation}}}}{\text{Na(l)}}\xrightarrow{{{\text{1st ionization}}}}{\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g)}} $
$ \dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}}\xrightarrow{{\dfrac{{\text{1}}}{{\text{2}}}{\text{ bond breaking}}}}{\text{Cl(g)}}\xrightarrow{{{\text{1st electron affinity}}}}{\text{C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} $
The standard heat of formation of NaCl is given as:
$ {\text{NaCl(s)}} \to {\text{Na(s) + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{{\Delta H}}_{{\text{f,NaCl}}}^{\text{0}}{\text{ = 411}} $ kJ …………..(1)
The enthalpy change during sublimation of sodium is given by:
$ {\text{Na(s)}} \to {{Na(g),\Delta }}{{\text{H}}_{{\text{sub,Na}}}}{\text{ = 107}} $ kJ …………..(2)
The first ionization energy of Na, that is, removal of one electron from sodium atom is given by:
$ {\text{Na(g)}} \to {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + }}{{\text{e}}^{\text{ - }}}{\text{,I}}{{\text{E}}_{{\text{1,Na(g)}}}}{\text{ = 502}} $ KJ…………..(3)
Now let us look at the enthalpy change when chlorine molecule breaks down to chlorine atom which is given by:
$ \dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} \to {\text{Cl(g),}}\dfrac{{\text{1}}}{{\text{2}}}{{\Delta }}{{\text{H}}_{{\text{bond,C}}{{\text{l}}_{\text{2}}}{\text{(g)}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{{ \times 242 = 121}} $ kJ…………..(4)
The enthalpy change when chlorine gains an electron is given by:
$ {\text{Cl(g) + }}{{\text{e}}^{\text{ - }}} \to {\text{C}}{{\text{l}}^{\text{ - }}}{\text{(g),E}}{{\text{A}}_{{\text{1,Cl(g)}}}}{\text{ = - 355}} $ kJ…………..(5)
We have to find the enthalpy change ( $ {{\Delta }}{{\text{H}}_{{\text{lattice}}}} $ ) during-
$ {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} \to {\text{NaCl(s)}} $ …………..(6)
If we add equation 1, 2, 3,4 and 5, we will get:
$ {\text{NaCl(s) + Na(s) + Na(g) + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g) + Cl(g) + }}{{\text{e}}^{\text{ - }}} \to {\text{Na(s) + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}(g) + {\text{Na(g)}} + {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + }}{{\text{e}}^{\text{ - }}} + {\text{Cl(g)}} + {\text{C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} $
Simplifying the above equation, we get:
$ {\text{NaCl(s)}} \to {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} $
$ {{\Delta H = 411 + 107 + 502 + 121 - 355 = 786}} $ kJ
Hence, for the reaction
$ {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} \to {\text{NaCl(s)}} $
$ {{\Delta }}{{\text{H}}_{{\text{lattice}}}}{{ = - \Delta H = - 786}} $ kJ
Hence, the bond energy for the formation of NaCl(s) is $ {\text{ - 786}} $ kJ.
Note:
The lattice energy of a crystalline solid is a measure of the energy released when ions are combined to make a compound. It is a measure of the cohesive forces that bind ions. Lattice energy is relevant to many practical properties which includes solubility, hardness, and volatility.
Complete step by step solution:
Sodium is metal and chlorine is a diatomic gas in room temperature and pressure but in NaCl, sodium and chlorine ions are present. So, we have to basically find out the following reaction:
$ {\text{Na(s)}}\xrightarrow{{{\text{sublimation}}}}{\text{Na(l)}}\xrightarrow{{{\text{1st ionization}}}}{\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g)}} $
$ \dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}}\xrightarrow{{\dfrac{{\text{1}}}{{\text{2}}}{\text{ bond breaking}}}}{\text{Cl(g)}}\xrightarrow{{{\text{1st electron affinity}}}}{\text{C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} $
The standard heat of formation of NaCl is given as:
$ {\text{NaCl(s)}} \to {\text{Na(s) + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{{\Delta H}}_{{\text{f,NaCl}}}^{\text{0}}{\text{ = 411}} $ kJ …………..(1)
The enthalpy change during sublimation of sodium is given by:
$ {\text{Na(s)}} \to {{Na(g),\Delta }}{{\text{H}}_{{\text{sub,Na}}}}{\text{ = 107}} $ kJ …………..(2)
The first ionization energy of Na, that is, removal of one electron from sodium atom is given by:
$ {\text{Na(g)}} \to {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + }}{{\text{e}}^{\text{ - }}}{\text{,I}}{{\text{E}}_{{\text{1,Na(g)}}}}{\text{ = 502}} $ KJ…………..(3)
Now let us look at the enthalpy change when chlorine molecule breaks down to chlorine atom which is given by:
$ \dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} \to {\text{Cl(g),}}\dfrac{{\text{1}}}{{\text{2}}}{{\Delta }}{{\text{H}}_{{\text{bond,C}}{{\text{l}}_{\text{2}}}{\text{(g)}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{{ \times 242 = 121}} $ kJ…………..(4)
The enthalpy change when chlorine gains an electron is given by:
$ {\text{Cl(g) + }}{{\text{e}}^{\text{ - }}} \to {\text{C}}{{\text{l}}^{\text{ - }}}{\text{(g),E}}{{\text{A}}_{{\text{1,Cl(g)}}}}{\text{ = - 355}} $ kJ…………..(5)
We have to find the enthalpy change ( $ {{\Delta }}{{\text{H}}_{{\text{lattice}}}} $ ) during-
$ {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} \to {\text{NaCl(s)}} $ …………..(6)
If we add equation 1, 2, 3,4 and 5, we will get:
$ {\text{NaCl(s) + Na(s) + Na(g) + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g) + Cl(g) + }}{{\text{e}}^{\text{ - }}} \to {\text{Na(s) + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}(g) + {\text{Na(g)}} + {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + }}{{\text{e}}^{\text{ - }}} + {\text{Cl(g)}} + {\text{C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} $
Simplifying the above equation, we get:
$ {\text{NaCl(s)}} \to {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} $
$ {{\Delta H = 411 + 107 + 502 + 121 - 355 = 786}} $ kJ
Hence, for the reaction
$ {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} \to {\text{NaCl(s)}} $
$ {{\Delta }}{{\text{H}}_{{\text{lattice}}}}{{ = - \Delta H = - 786}} $ kJ
Hence, the bond energy for the formation of NaCl(s) is $ {\text{ - 786}} $ kJ.
Note:
The lattice energy of a crystalline solid is a measure of the energy released when ions are combined to make a compound. It is a measure of the cohesive forces that bind ions. Lattice energy is relevant to many practical properties which includes solubility, hardness, and volatility.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

