
How do you do trig decimals without a calculator like $\cos \left( 5.22 \right)$?
Answer
533.4k+ views
Hint: For solving the trigonometric decimals given as $\cos \left( 5.22 \right)$, we have to use the series expression of the cosine and the sine functions given respectively as $\cos x=1-\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}-......$ and $\sin x=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}-......$. We first need to simplify the argument as the largest multiple of $\dfrac{\pi }{2}$. For this, we can use the approximate value of $\pi $ which is $3.14$. Then using the identity $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ we will get the final answer.
Complete step by step solution:
Let us write the given trigonometric expression as
$\Rightarrow E=\cos \left( 5.22 \right).......\left( i \right)$
For dealing the above trigonometric decimal, we use the approximate decimal expansion of $\pi $ as
$\Rightarrow \pi =3.14$
Multiplying both sides by $\dfrac{3}{2}$ we get
\[\begin{align}
& \Rightarrow \dfrac{3\pi }{2}=\dfrac{3\left( 3.14 \right)}{2} \\
& \Rightarrow \dfrac{3\pi }{2}=4.71.......\left( ii \right) \\
\end{align}\]
Adding and subtracting $4.71$ to the argument, $5.22$ we get
$\begin{align}
& \Rightarrow 5.22=4.71+5.22-4.71 \\
& \Rightarrow 5.22=4.71+0.51 \\
\end{align}$
Substituting the equation (ii) in the above equation, we grt
$\Rightarrow 5.22=\dfrac{3\pi }{2}+0.51........\left( iii \right)$
Now, we substitute the above equation (iii) in the equation (i) to get
$\Rightarrow E=\cos \left( \dfrac{3\pi }{2}+0.51 \right)$
We know that $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$. So the above expression can be written as
$\Rightarrow E=\cos \left( \dfrac{3\pi }{2} \right)\cos \left( 0.51 \right)-\sin \left( \dfrac{3\pi }{2} \right)\sin \left( 0.51 \right)$
Now since \[\sin \left( \dfrac{3\pi }{2} \right)=-1\] and \[\cos \left( \dfrac{3\pi }{2} \right)=0\] , we can write the above expression as
$\begin{align}
& \Rightarrow E=\left( 0 \right)\cos \left( 0.51 \right)-\left( -1 \right)\sin \left( 0.51 \right) \\
& \Rightarrow E=\sin \left( 0.51 \right).......\left( iv \right) \\
\end{align}$
Now, we know that the series expansion of the sine function is given by
$\Rightarrow \sin x=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}-......$
Substituting $x=0.51$ in the above expression we get
$\Rightarrow \sin \left( 0.51 \right)=\left( 0.51 \right)-\dfrac{{{\left( 0.51 \right)}^{3}}}{3!}+\dfrac{{{\left( 0.51 \right)}^{5}}}{5!}-......$
On solving the RHS, we get
$\Rightarrow \sin \left( 0.51 \right)=0.49$
Finally substituting the above in the equation (iv) we get
$\Rightarrow E=0.49$
Hence, we have found the value of the given trigonometric decimal as $0.49$.
Note:
We can also use the trigonometric identity $\cos \left( \dfrac{3\pi }{2}+x \right)=\sin x$ in the above solution. Also, while modifying the argument of the given expression, we must ensure that the remainder argument must be less than one. For example, we modified the argument in the above solution as $\dfrac{3\pi }{2}+0.51$ since $0.51$ is less than one.
Complete step by step solution:
Let us write the given trigonometric expression as
$\Rightarrow E=\cos \left( 5.22 \right).......\left( i \right)$
For dealing the above trigonometric decimal, we use the approximate decimal expansion of $\pi $ as
$\Rightarrow \pi =3.14$
Multiplying both sides by $\dfrac{3}{2}$ we get
\[\begin{align}
& \Rightarrow \dfrac{3\pi }{2}=\dfrac{3\left( 3.14 \right)}{2} \\
& \Rightarrow \dfrac{3\pi }{2}=4.71.......\left( ii \right) \\
\end{align}\]
Adding and subtracting $4.71$ to the argument, $5.22$ we get
$\begin{align}
& \Rightarrow 5.22=4.71+5.22-4.71 \\
& \Rightarrow 5.22=4.71+0.51 \\
\end{align}$
Substituting the equation (ii) in the above equation, we grt
$\Rightarrow 5.22=\dfrac{3\pi }{2}+0.51........\left( iii \right)$
Now, we substitute the above equation (iii) in the equation (i) to get
$\Rightarrow E=\cos \left( \dfrac{3\pi }{2}+0.51 \right)$
We know that $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$. So the above expression can be written as
$\Rightarrow E=\cos \left( \dfrac{3\pi }{2} \right)\cos \left( 0.51 \right)-\sin \left( \dfrac{3\pi }{2} \right)\sin \left( 0.51 \right)$
Now since \[\sin \left( \dfrac{3\pi }{2} \right)=-1\] and \[\cos \left( \dfrac{3\pi }{2} \right)=0\] , we can write the above expression as
$\begin{align}
& \Rightarrow E=\left( 0 \right)\cos \left( 0.51 \right)-\left( -1 \right)\sin \left( 0.51 \right) \\
& \Rightarrow E=\sin \left( 0.51 \right).......\left( iv \right) \\
\end{align}$
Now, we know that the series expansion of the sine function is given by
$\Rightarrow \sin x=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}-......$
Substituting $x=0.51$ in the above expression we get
$\Rightarrow \sin \left( 0.51 \right)=\left( 0.51 \right)-\dfrac{{{\left( 0.51 \right)}^{3}}}{3!}+\dfrac{{{\left( 0.51 \right)}^{5}}}{5!}-......$
On solving the RHS, we get
$\Rightarrow \sin \left( 0.51 \right)=0.49$
Finally substituting the above in the equation (iv) we get
$\Rightarrow E=0.49$
Hence, we have found the value of the given trigonometric decimal as $0.49$.
Note:
We can also use the trigonometric identity $\cos \left( \dfrac{3\pi }{2}+x \right)=\sin x$ in the above solution. Also, while modifying the argument of the given expression, we must ensure that the remainder argument must be less than one. For example, we modified the argument in the above solution as $\dfrac{3\pi }{2}+0.51$ since $0.51$ is less than one.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

