
How do you divide \[\dfrac{{ - {x^4} + 8{x^3} - 3{x^2} + 4x - 2}}{{{x^2} + 4}}\]?
Answer
450.3k+ views
Hint: In this question we have to divide the given polynomial with the binomial given, for this we will use long division method, and we should know that the long division method of polynomials where we divide \[p\left( x \right)\] by\[g\left( x \right)\] comparing the first terms of the divisor polynomial and the dividend polynomial until we get a remainder \[r\left( x \right)\] whose degree is less than the degree \[g\left( x \right)\].
Complete step by step solution:
Given polynomial is \[ - {x^4} + 8{x^3} - 3{x^2} + 4x - 2\] and we have to divide this polynomial with the polynomial \[{x^2} + 4\],
For this, first consider both the leading terms of the dividend and divisor, here they are $ - {x^4}$and${x^2}$,
Next, divide the leading term of the dividend by the leading term of the divisor.
Next place the partial quotient on right side, i.e.,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right.\],
Now take the partial quotient you placed on right side i.e.,$ - {x^2}$, and distribute into the divisor${x^2} + 4$.
Position the product of $ - {x^2}$and${x^2} + 4$ under the dividend. Make sure to align them by similar terms, i.e.,$ - {x^4}$
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right.\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
Perform subtraction by switching the signs of the bottom polynomial, i.e, here,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right.\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[\left( + \right)\]\[\left( - \right)\]\[\left( + \right)\],
Proceed with regular addition vertically. We will see that the first column from the left cancels each other out, i.e.,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right.\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
$8{x^3} + {x^2}$
Next, look at the bottom polynomial, $8{x^3} + {x^2}$, take its leading term which is \[8{x^3}\] and divide it by the leading term of the divisor\[{x^2}\],
Again, place the partial quotient on right side, i.e.,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
$8{x^3} + {x^2}$
Now carry down the next adjacent term of the dividend, i.e., here it will be \[ + 4x\], now we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
Use the partial quotient that you put up, \[8x\], and distribute into the divisor, i.e., Place the product of \[8x\] and leading term of the divisor i.e.,\[{x^2}\], we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
Now subtract the terms we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
${x^2} - 28x$
Now carry down the next adjacent term of the dividend, i.e., here it will be \[2\], now we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
${x^2} - 28x - 2$ ,
Next, look at the bottom polynomial, ${x^2} - 28x - 2$, take its leading term which is \[{x^2}\] and divide it by the leading term of the divisor \[{x^2}\], we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x + 1\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
${x^2} - 28x - 2$ ,
\[\underline {{x^2} + 0x + 4} \]
Now subtract the like terms we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x + 1\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
${x^2} - 28x - 2$ ,
\[\underline {{x^2} + 0x + 4} \]
\[ - 28x - 6\]
So, here the remainder is \[ - 28x - 6\], and the quotient is \[ - {x^2} + 8x + 1\].
Final Answer:
\[\therefore \] The quotient when the polynomial \[ - {x^4} + 8{x^3} - 3{x^2} + 4x - 2\] is divided by \[{x^2} + 4\] will be equal to \[ - {x^2} + 8x + 1\] and the remainder is \[ - 28x - 6\].
Note:
When we divide a dividend polynomial \[p\left( x \right)\] with degree \[n\] by some divisor \[g\left( x \right)\] with degree \[m\], then \[m \leqslant n\]then we get the quotient polynomial \[q\left( x \right)\] of degree \[n - m\] and the remainder polynomial as \[r\left( x \right)\] of degree \[h\], then \[h < m\].
Complete step by step solution:
Given polynomial is \[ - {x^4} + 8{x^3} - 3{x^2} + 4x - 2\] and we have to divide this polynomial with the polynomial \[{x^2} + 4\],
For this, first consider both the leading terms of the dividend and divisor, here they are $ - {x^4}$and${x^2}$,
Next, divide the leading term of the dividend by the leading term of the divisor.
Next place the partial quotient on right side, i.e.,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right.\],
Now take the partial quotient you placed on right side i.e.,$ - {x^2}$, and distribute into the divisor${x^2} + 4$.
Position the product of $ - {x^2}$and${x^2} + 4$ under the dividend. Make sure to align them by similar terms, i.e.,$ - {x^4}$
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right.\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
Perform subtraction by switching the signs of the bottom polynomial, i.e, here,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right.\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[\left( + \right)\]\[\left( - \right)\]\[\left( + \right)\],
Proceed with regular addition vertically. We will see that the first column from the left cancels each other out, i.e.,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right.\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
$8{x^3} + {x^2}$
Next, look at the bottom polynomial, $8{x^3} + {x^2}$, take its leading term which is \[8{x^3}\] and divide it by the leading term of the divisor\[{x^2}\],
Again, place the partial quotient on right side, i.e.,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
$8{x^3} + {x^2}$
Now carry down the next adjacent term of the dividend, i.e., here it will be \[ + 4x\], now we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
Use the partial quotient that you put up, \[8x\], and distribute into the divisor, i.e., Place the product of \[8x\] and leading term of the divisor i.e.,\[{x^2}\], we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
Now subtract the terms we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
${x^2} - 28x$
Now carry down the next adjacent term of the dividend, i.e., here it will be \[2\], now we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
${x^2} - 28x - 2$ ,
Next, look at the bottom polynomial, ${x^2} - 28x - 2$, take its leading term which is \[{x^2}\] and divide it by the leading term of the divisor \[{x^2}\], we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x + 1\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
${x^2} - 28x - 2$ ,
\[\underline {{x^2} + 0x + 4} \]
Now subtract the like terms we get,
\[ \Rightarrow \left. {{x^2} + 4} \right)\overline { - {x^4} + 8{x^3} - 3{x^2} + 4x - 2} \left( { - {x^2}} \right. + 8x + 1\]
$\underline { - {x^4} + 0{x^3} - 4{x^2}} $,
\[8{x^3} + {x^2} + 4x\]
$\underline {8{x^3} + 0{x^2} + 32x} $
${x^2} - 28x - 2$ ,
\[\underline {{x^2} + 0x + 4} \]
\[ - 28x - 6\]
So, here the remainder is \[ - 28x - 6\], and the quotient is \[ - {x^2} + 8x + 1\].
Final Answer:
\[\therefore \] The quotient when the polynomial \[ - {x^4} + 8{x^3} - 3{x^2} + 4x - 2\] is divided by \[{x^2} + 4\] will be equal to \[ - {x^2} + 8x + 1\] and the remainder is \[ - 28x - 6\].
Note:
When we divide a dividend polynomial \[p\left( x \right)\] with degree \[n\] by some divisor \[g\left( x \right)\] with degree \[m\], then \[m \leqslant n\]then we get the quotient polynomial \[q\left( x \right)\] of degree \[n - m\] and the remainder polynomial as \[r\left( x \right)\] of degree \[h\], then \[h < m\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
