
What is the distance from the origin of the normal to the curve $x = 2\cos t + 2t\sin t$, $y = 2\sin t - 2t\cos t$ at $t = \dfrac{\pi }{4}$?
$
{\text{A}}{\text{. 2}} \\
{\text{B}}{\text{. 4}} \\
{\text{C}}{\text{. }}\sqrt {\text{2}} \\
{\text{D}}{\text{. 2}}\sqrt {\text{2}} \\
$
Answer
612.9k+ views
Hint- Here, we will be proceeding by differentiating both the given parametric equations of the curve with respect to t. Then, we will use the formula i.e., Slope of the normal to any curve is given by $ - \dfrac{{dx}}{{dy}}$.
Complete Step-by-Step solution:
Given equations of the curve in parametric form are $x = 2\cos t + 2t\sin t{\text{ }} \to {\text{(1)}}$ and $y = 2\sin t - 2t\cos t{\text{ }} \to {\text{(2)}}$
By differentiating equation (1) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t + 2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t} \right) + \dfrac{d}{{dt}}\left( {2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\cos t} \right) + 2\dfrac{d}{{dt}}\left( {t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\left( { - \sin t} \right) + 2\left( {t\cos t + \sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = - 2\sin t + 2t\cos t + 2\sin t \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2t\cos t{\text{ }} \to {\text{(3)}} \\
\]
By differentiating equation (2) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t - 2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t} \right) - \dfrac{d}{{dt}}\left( {2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\sin t} \right) - 2\dfrac{d}{{dt}}\left( {t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\left( {\cos t} \right) - 2\left[ {t\left( { - \sin t} \right) + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t - 2\left[ { - t\sin t + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t + 2t\sin t - 2\cos t \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2t\sin t{\text{ }} \to {\text{(4)}} \\
\]
By dividing equation (3) by equation (4), we get
\[
\Rightarrow \dfrac{{\left( {\dfrac{{dx}}{{dt}}} \right)}}{{\left( {\dfrac{{dy}}{{dt}}} \right)}} = \dfrac{{2t\cos t}}{{2t\sin t}} \\
\Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{\cos t}}{{\sin t}} \\
\]
According to the definition of cotangent trigonometric function, \[\cot t = \dfrac{{\cos t}}{{\sin t}}\]
\[ \Rightarrow \dfrac{{dx}}{{dy}} = \cot t\]
As we know that the slope of the normal to any curve is given by $ - \dfrac{{dx}}{{dy}}$
Since, $\cot \left( {\dfrac{\pi }{4}} \right) = 1$
Slope of the normal to the given curve at $t = \dfrac{\pi }{4}$ = $ - \dfrac{{dx}}{{dy}} = - \cot t = - \cot \left( {\dfrac{\pi }{4}} \right) = - 1$
Put $t = \dfrac{\pi }{4}$in equations (1) and (2), we get
$ \Rightarrow x = 2\cos \left( {\dfrac{\pi }{4}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\sin \left( {\dfrac{\pi }{4}} \right)$
Using $\sin \left( {\dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ in the above equation, we get
$
\Rightarrow x = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow x = \dfrac{2}{{\sqrt 2 }} + \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{\left( {2 \times 2} \right) + \pi }}{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{4 + \pi }}{{2\sqrt 2 }} \\
$
Also, $
\Rightarrow y = 2\sin \left( {\dfrac{\pi }{4}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow y = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow y = \dfrac{2}{{\sqrt 2 }} - \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{\left( {2 \times 2} \right) - \pi }}{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{4 - \pi }}{{2\sqrt 2 }} \\
$
So, the normal to the given curve must be passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$)
As we know that the equation of any straight line having slope m and passing through point (a,b) is given by y-b = m(x-a)
So, the equation of the normal having slope of -1 and passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$) is given by
\[
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = - 1\left[ {x - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right)} \right] \\
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) - x \\
\Rightarrow x + y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{\left( {4 - \pi } \right) + \left( {4 + \pi } \right)}}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{4 - \pi + 4 + \pi }}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{8}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0 \\
\]
Since, the distance from point $\left( {{x_1},{y_1}} \right)$ of the straight line $ax + by +c = 0$ is given by
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
So, the distance from origin (0,0) of the normal \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] is given by
$
\Rightarrow d = \left| {\dfrac{{\left( {1 \times 0} \right) + \left( {1 \times 0} \right) + \left( { - \dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt {{1^2} + {1^2}} }}} \right| \\
\Rightarrow d = \left| {\dfrac{{0 + 0 - \left( {\dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - \dfrac{4}{{\sqrt 2 }}}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{{\sqrt 2 \times \sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{2}} \right| = \left| { - 2} \right| \\
\Rightarrow d = 2 \\
$
Therefore, the distance from origin (0,0) of the normal to the curve $x = 2\cos t + 2t\sin t$, $y = 2\sin t - 2t\cos t$ at $t = \dfrac{\pi }{4}$ is 2.
Hence, option A is correct.
Note- In this particular problem, we have compared the equation of the normal to the given curve i.e., \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] with the general equation of the straight line i.e., $ax + by = c$ we will get a = 1, y = 1 and c = \[ - \dfrac{4}{{\sqrt 2 }}\]. Also, here the point through which the normal to the given curve is passing is located at $t = \dfrac{\pi }{4}$.
Complete Step-by-Step solution:
Given equations of the curve in parametric form are $x = 2\cos t + 2t\sin t{\text{ }} \to {\text{(1)}}$ and $y = 2\sin t - 2t\cos t{\text{ }} \to {\text{(2)}}$
By differentiating equation (1) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t + 2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t} \right) + \dfrac{d}{{dt}}\left( {2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\cos t} \right) + 2\dfrac{d}{{dt}}\left( {t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\left( { - \sin t} \right) + 2\left( {t\cos t + \sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = - 2\sin t + 2t\cos t + 2\sin t \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2t\cos t{\text{ }} \to {\text{(3)}} \\
\]
By differentiating equation (2) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t - 2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t} \right) - \dfrac{d}{{dt}}\left( {2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\sin t} \right) - 2\dfrac{d}{{dt}}\left( {t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\left( {\cos t} \right) - 2\left[ {t\left( { - \sin t} \right) + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t - 2\left[ { - t\sin t + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t + 2t\sin t - 2\cos t \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2t\sin t{\text{ }} \to {\text{(4)}} \\
\]
By dividing equation (3) by equation (4), we get
\[
\Rightarrow \dfrac{{\left( {\dfrac{{dx}}{{dt}}} \right)}}{{\left( {\dfrac{{dy}}{{dt}}} \right)}} = \dfrac{{2t\cos t}}{{2t\sin t}} \\
\Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{\cos t}}{{\sin t}} \\
\]
According to the definition of cotangent trigonometric function, \[\cot t = \dfrac{{\cos t}}{{\sin t}}\]
\[ \Rightarrow \dfrac{{dx}}{{dy}} = \cot t\]
As we know that the slope of the normal to any curve is given by $ - \dfrac{{dx}}{{dy}}$
Since, $\cot \left( {\dfrac{\pi }{4}} \right) = 1$
Slope of the normal to the given curve at $t = \dfrac{\pi }{4}$ = $ - \dfrac{{dx}}{{dy}} = - \cot t = - \cot \left( {\dfrac{\pi }{4}} \right) = - 1$
Put $t = \dfrac{\pi }{4}$in equations (1) and (2), we get
$ \Rightarrow x = 2\cos \left( {\dfrac{\pi }{4}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\sin \left( {\dfrac{\pi }{4}} \right)$
Using $\sin \left( {\dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ in the above equation, we get
$
\Rightarrow x = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow x = \dfrac{2}{{\sqrt 2 }} + \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{\left( {2 \times 2} \right) + \pi }}{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{4 + \pi }}{{2\sqrt 2 }} \\
$
Also, $
\Rightarrow y = 2\sin \left( {\dfrac{\pi }{4}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow y = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow y = \dfrac{2}{{\sqrt 2 }} - \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{\left( {2 \times 2} \right) - \pi }}{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{4 - \pi }}{{2\sqrt 2 }} \\
$
So, the normal to the given curve must be passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$)
As we know that the equation of any straight line having slope m and passing through point (a,b) is given by y-b = m(x-a)
So, the equation of the normal having slope of -1 and passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$) is given by
\[
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = - 1\left[ {x - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right)} \right] \\
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) - x \\
\Rightarrow x + y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{\left( {4 - \pi } \right) + \left( {4 + \pi } \right)}}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{4 - \pi + 4 + \pi }}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{8}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0 \\
\]
Since, the distance from point $\left( {{x_1},{y_1}} \right)$ of the straight line $ax + by +c = 0$ is given by
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
So, the distance from origin (0,0) of the normal \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] is given by
$
\Rightarrow d = \left| {\dfrac{{\left( {1 \times 0} \right) + \left( {1 \times 0} \right) + \left( { - \dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt {{1^2} + {1^2}} }}} \right| \\
\Rightarrow d = \left| {\dfrac{{0 + 0 - \left( {\dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - \dfrac{4}{{\sqrt 2 }}}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{{\sqrt 2 \times \sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{2}} \right| = \left| { - 2} \right| \\
\Rightarrow d = 2 \\
$
Therefore, the distance from origin (0,0) of the normal to the curve $x = 2\cos t + 2t\sin t$, $y = 2\sin t - 2t\cos t$ at $t = \dfrac{\pi }{4}$ is 2.
Hence, option A is correct.
Note- In this particular problem, we have compared the equation of the normal to the given curve i.e., \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] with the general equation of the straight line i.e., $ax + by = c$ we will get a = 1, y = 1 and c = \[ - \dfrac{4}{{\sqrt 2 }}\]. Also, here the point through which the normal to the given curve is passing is located at $t = \dfrac{\pi }{4}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

