
What is the distance from the origin of the normal to the curve $x = 2\cos t + 2t\sin t$, $y = 2\sin t - 2t\cos t$ at $t = \dfrac{\pi }{4}$?
$
{\text{A}}{\text{. 2}} \\
{\text{B}}{\text{. 4}} \\
{\text{C}}{\text{. }}\sqrt {\text{2}} \\
{\text{D}}{\text{. 2}}\sqrt {\text{2}} \\
$
Answer
600.9k+ views
Hint- Here, we will be proceeding by differentiating both the given parametric equations of the curve with respect to t. Then, we will use the formula i.e., Slope of the normal to any curve is given by $ - \dfrac{{dx}}{{dy}}$.
Complete Step-by-Step solution:
Given equations of the curve in parametric form are $x = 2\cos t + 2t\sin t{\text{ }} \to {\text{(1)}}$ and $y = 2\sin t - 2t\cos t{\text{ }} \to {\text{(2)}}$
By differentiating equation (1) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t + 2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t} \right) + \dfrac{d}{{dt}}\left( {2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\cos t} \right) + 2\dfrac{d}{{dt}}\left( {t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\left( { - \sin t} \right) + 2\left( {t\cos t + \sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = - 2\sin t + 2t\cos t + 2\sin t \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2t\cos t{\text{ }} \to {\text{(3)}} \\
\]
By differentiating equation (2) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t - 2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t} \right) - \dfrac{d}{{dt}}\left( {2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\sin t} \right) - 2\dfrac{d}{{dt}}\left( {t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\left( {\cos t} \right) - 2\left[ {t\left( { - \sin t} \right) + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t - 2\left[ { - t\sin t + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t + 2t\sin t - 2\cos t \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2t\sin t{\text{ }} \to {\text{(4)}} \\
\]
By dividing equation (3) by equation (4), we get
\[
\Rightarrow \dfrac{{\left( {\dfrac{{dx}}{{dt}}} \right)}}{{\left( {\dfrac{{dy}}{{dt}}} \right)}} = \dfrac{{2t\cos t}}{{2t\sin t}} \\
\Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{\cos t}}{{\sin t}} \\
\]
According to the definition of cotangent trigonometric function, \[\cot t = \dfrac{{\cos t}}{{\sin t}}\]
\[ \Rightarrow \dfrac{{dx}}{{dy}} = \cot t\]
As we know that the slope of the normal to any curve is given by $ - \dfrac{{dx}}{{dy}}$
Since, $\cot \left( {\dfrac{\pi }{4}} \right) = 1$
Slope of the normal to the given curve at $t = \dfrac{\pi }{4}$ = $ - \dfrac{{dx}}{{dy}} = - \cot t = - \cot \left( {\dfrac{\pi }{4}} \right) = - 1$
Put $t = \dfrac{\pi }{4}$in equations (1) and (2), we get
$ \Rightarrow x = 2\cos \left( {\dfrac{\pi }{4}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\sin \left( {\dfrac{\pi }{4}} \right)$
Using $\sin \left( {\dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ in the above equation, we get
$
\Rightarrow x = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow x = \dfrac{2}{{\sqrt 2 }} + \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{\left( {2 \times 2} \right) + \pi }}{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{4 + \pi }}{{2\sqrt 2 }} \\
$
Also, $
\Rightarrow y = 2\sin \left( {\dfrac{\pi }{4}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow y = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow y = \dfrac{2}{{\sqrt 2 }} - \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{\left( {2 \times 2} \right) - \pi }}{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{4 - \pi }}{{2\sqrt 2 }} \\
$
So, the normal to the given curve must be passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$)
As we know that the equation of any straight line having slope m and passing through point (a,b) is given by y-b = m(x-a)
So, the equation of the normal having slope of -1 and passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$) is given by
\[
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = - 1\left[ {x - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right)} \right] \\
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) - x \\
\Rightarrow x + y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{\left( {4 - \pi } \right) + \left( {4 + \pi } \right)}}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{4 - \pi + 4 + \pi }}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{8}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0 \\
\]
Since, the distance from point $\left( {{x_1},{y_1}} \right)$ of the straight line $ax + by +c = 0$ is given by
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
So, the distance from origin (0,0) of the normal \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] is given by
$
\Rightarrow d = \left| {\dfrac{{\left( {1 \times 0} \right) + \left( {1 \times 0} \right) + \left( { - \dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt {{1^2} + {1^2}} }}} \right| \\
\Rightarrow d = \left| {\dfrac{{0 + 0 - \left( {\dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - \dfrac{4}{{\sqrt 2 }}}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{{\sqrt 2 \times \sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{2}} \right| = \left| { - 2} \right| \\
\Rightarrow d = 2 \\
$
Therefore, the distance from origin (0,0) of the normal to the curve $x = 2\cos t + 2t\sin t$, $y = 2\sin t - 2t\cos t$ at $t = \dfrac{\pi }{4}$ is 2.
Hence, option A is correct.
Note- In this particular problem, we have compared the equation of the normal to the given curve i.e., \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] with the general equation of the straight line i.e., $ax + by = c$ we will get a = 1, y = 1 and c = \[ - \dfrac{4}{{\sqrt 2 }}\]. Also, here the point through which the normal to the given curve is passing is located at $t = \dfrac{\pi }{4}$.
Complete Step-by-Step solution:
Given equations of the curve in parametric form are $x = 2\cos t + 2t\sin t{\text{ }} \to {\text{(1)}}$ and $y = 2\sin t - 2t\cos t{\text{ }} \to {\text{(2)}}$
By differentiating equation (1) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t + 2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t} \right) + \dfrac{d}{{dt}}\left( {2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\cos t} \right) + 2\dfrac{d}{{dt}}\left( {t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\left( { - \sin t} \right) + 2\left( {t\cos t + \sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = - 2\sin t + 2t\cos t + 2\sin t \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2t\cos t{\text{ }} \to {\text{(3)}} \\
\]
By differentiating equation (2) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t - 2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t} \right) - \dfrac{d}{{dt}}\left( {2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\sin t} \right) - 2\dfrac{d}{{dt}}\left( {t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\left( {\cos t} \right) - 2\left[ {t\left( { - \sin t} \right) + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t - 2\left[ { - t\sin t + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t + 2t\sin t - 2\cos t \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2t\sin t{\text{ }} \to {\text{(4)}} \\
\]
By dividing equation (3) by equation (4), we get
\[
\Rightarrow \dfrac{{\left( {\dfrac{{dx}}{{dt}}} \right)}}{{\left( {\dfrac{{dy}}{{dt}}} \right)}} = \dfrac{{2t\cos t}}{{2t\sin t}} \\
\Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{\cos t}}{{\sin t}} \\
\]
According to the definition of cotangent trigonometric function, \[\cot t = \dfrac{{\cos t}}{{\sin t}}\]
\[ \Rightarrow \dfrac{{dx}}{{dy}} = \cot t\]
As we know that the slope of the normal to any curve is given by $ - \dfrac{{dx}}{{dy}}$
Since, $\cot \left( {\dfrac{\pi }{4}} \right) = 1$
Slope of the normal to the given curve at $t = \dfrac{\pi }{4}$ = $ - \dfrac{{dx}}{{dy}} = - \cot t = - \cot \left( {\dfrac{\pi }{4}} \right) = - 1$
Put $t = \dfrac{\pi }{4}$in equations (1) and (2), we get
$ \Rightarrow x = 2\cos \left( {\dfrac{\pi }{4}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\sin \left( {\dfrac{\pi }{4}} \right)$
Using $\sin \left( {\dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ in the above equation, we get
$
\Rightarrow x = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow x = \dfrac{2}{{\sqrt 2 }} + \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{\left( {2 \times 2} \right) + \pi }}{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{4 + \pi }}{{2\sqrt 2 }} \\
$
Also, $
\Rightarrow y = 2\sin \left( {\dfrac{\pi }{4}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow y = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow y = \dfrac{2}{{\sqrt 2 }} - \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{\left( {2 \times 2} \right) - \pi }}{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{4 - \pi }}{{2\sqrt 2 }} \\
$
So, the normal to the given curve must be passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$)
As we know that the equation of any straight line having slope m and passing through point (a,b) is given by y-b = m(x-a)
So, the equation of the normal having slope of -1 and passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$) is given by
\[
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = - 1\left[ {x - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right)} \right] \\
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) - x \\
\Rightarrow x + y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{\left( {4 - \pi } \right) + \left( {4 + \pi } \right)}}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{4 - \pi + 4 + \pi }}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{8}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0 \\
\]
Since, the distance from point $\left( {{x_1},{y_1}} \right)$ of the straight line $ax + by +c = 0$ is given by
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
So, the distance from origin (0,0) of the normal \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] is given by
$
\Rightarrow d = \left| {\dfrac{{\left( {1 \times 0} \right) + \left( {1 \times 0} \right) + \left( { - \dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt {{1^2} + {1^2}} }}} \right| \\
\Rightarrow d = \left| {\dfrac{{0 + 0 - \left( {\dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - \dfrac{4}{{\sqrt 2 }}}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{{\sqrt 2 \times \sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{2}} \right| = \left| { - 2} \right| \\
\Rightarrow d = 2 \\
$
Therefore, the distance from origin (0,0) of the normal to the curve $x = 2\cos t + 2t\sin t$, $y = 2\sin t - 2t\cos t$ at $t = \dfrac{\pi }{4}$ is 2.
Hence, option A is correct.
Note- In this particular problem, we have compared the equation of the normal to the given curve i.e., \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] with the general equation of the straight line i.e., $ax + by = c$ we will get a = 1, y = 1 and c = \[ - \dfrac{4}{{\sqrt 2 }}\]. Also, here the point through which the normal to the given curve is passing is located at $t = \dfrac{\pi }{4}$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

