
What is the distance from the origin of the normal to the curve $x = 2\cos t + 2t\sin t$, $y = 2\sin t - 2t\cos t$ at $t = \dfrac{\pi }{4}$?
$
{\text{A}}{\text{. 2}} \\
{\text{B}}{\text{. 4}} \\
{\text{C}}{\text{. }}\sqrt {\text{2}} \\
{\text{D}}{\text{. 2}}\sqrt {\text{2}} \\
$
Answer
518.4k+ views
Hint- Here, we will be proceeding by differentiating both the given parametric equations of the curve with respect to t. Then, we will use the formula i.e., Slope of the normal to any curve is given by $ - \dfrac{{dx}}{{dy}}$.
Complete Step-by-Step solution:
Given equations of the curve in parametric form are $x = 2\cos t + 2t\sin t{\text{ }} \to {\text{(1)}}$ and $y = 2\sin t - 2t\cos t{\text{ }} \to {\text{(2)}}$
By differentiating equation (1) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t + 2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t} \right) + \dfrac{d}{{dt}}\left( {2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\cos t} \right) + 2\dfrac{d}{{dt}}\left( {t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\left( { - \sin t} \right) + 2\left( {t\cos t + \sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = - 2\sin t + 2t\cos t + 2\sin t \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2t\cos t{\text{ }} \to {\text{(3)}} \\
\]
By differentiating equation (2) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t - 2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t} \right) - \dfrac{d}{{dt}}\left( {2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\sin t} \right) - 2\dfrac{d}{{dt}}\left( {t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\left( {\cos t} \right) - 2\left[ {t\left( { - \sin t} \right) + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t - 2\left[ { - t\sin t + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t + 2t\sin t - 2\cos t \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2t\sin t{\text{ }} \to {\text{(4)}} \\
\]
By dividing equation (3) by equation (4), we get
\[
\Rightarrow \dfrac{{\left( {\dfrac{{dx}}{{dt}}} \right)}}{{\left( {\dfrac{{dy}}{{dt}}} \right)}} = \dfrac{{2t\cos t}}{{2t\sin t}} \\
\Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{\cos t}}{{\sin t}} \\
\]
According to the definition of cotangent trigonometric function, \[\cot t = \dfrac{{\cos t}}{{\sin t}}\]
\[ \Rightarrow \dfrac{{dx}}{{dy}} = \cot t\]
As we know that the slope of the normal to any curve is given by $ - \dfrac{{dx}}{{dy}}$
Since, $\cot \left( {\dfrac{\pi }{4}} \right) = 1$
Slope of the normal to the given curve at $t = \dfrac{\pi }{4}$ = $ - \dfrac{{dx}}{{dy}} = - \cot t = - \cot \left( {\dfrac{\pi }{4}} \right) = - 1$
Put $t = \dfrac{\pi }{4}$in equations (1) and (2), we get
$ \Rightarrow x = 2\cos \left( {\dfrac{\pi }{4}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\sin \left( {\dfrac{\pi }{4}} \right)$
Using $\sin \left( {\dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ in the above equation, we get
$
\Rightarrow x = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow x = \dfrac{2}{{\sqrt 2 }} + \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{\left( {2 \times 2} \right) + \pi }}{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{4 + \pi }}{{2\sqrt 2 }} \\
$
Also, $
\Rightarrow y = 2\sin \left( {\dfrac{\pi }{4}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow y = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow y = \dfrac{2}{{\sqrt 2 }} - \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{\left( {2 \times 2} \right) - \pi }}{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{4 - \pi }}{{2\sqrt 2 }} \\
$
So, the normal to the given curve must be passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$)
As we know that the equation of any straight line having slope m and passing through point (a,b) is given by y-b = m(x-a)
So, the equation of the normal having slope of -1 and passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$) is given by
\[
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = - 1\left[ {x - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right)} \right] \\
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) - x \\
\Rightarrow x + y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{\left( {4 - \pi } \right) + \left( {4 + \pi } \right)}}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{4 - \pi + 4 + \pi }}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{8}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0 \\
\]
Since, the distance from point $\left( {{x_1},{y_1}} \right)$ of the straight line $ax + by +c = 0$ is given by
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
So, the distance from origin (0,0) of the normal \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] is given by
$
\Rightarrow d = \left| {\dfrac{{\left( {1 \times 0} \right) + \left( {1 \times 0} \right) + \left( { - \dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt {{1^2} + {1^2}} }}} \right| \\
\Rightarrow d = \left| {\dfrac{{0 + 0 - \left( {\dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - \dfrac{4}{{\sqrt 2 }}}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{{\sqrt 2 \times \sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{2}} \right| = \left| { - 2} \right| \\
\Rightarrow d = 2 \\
$
Therefore, the distance from origin (0,0) of the normal to the curve $x = 2\cos t + 2t\sin t$, $y = 2\sin t - 2t\cos t$ at $t = \dfrac{\pi }{4}$ is 2.
Hence, option A is correct.
Note- In this particular problem, we have compared the equation of the normal to the given curve i.e., \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] with the general equation of the straight line i.e., $ax + by = c$ we will get a = 1, y = 1 and c = \[ - \dfrac{4}{{\sqrt 2 }}\]. Also, here the point through which the normal to the given curve is passing is located at $t = \dfrac{\pi }{4}$.
Complete Step-by-Step solution:
Given equations of the curve in parametric form are $x = 2\cos t + 2t\sin t{\text{ }} \to {\text{(1)}}$ and $y = 2\sin t - 2t\cos t{\text{ }} \to {\text{(2)}}$
By differentiating equation (1) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t + 2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {2\cos t} \right) + \dfrac{d}{{dt}}\left( {2t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\cos t} \right) + 2\dfrac{d}{{dt}}\left( {t\sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2\left( { - \sin t} \right) + 2\left( {t\cos t + \sin t} \right) \\
\Rightarrow \dfrac{{dx}}{{dt}} = - 2\sin t + 2t\cos t + 2\sin t \\
\Rightarrow \dfrac{{dx}}{{dt}} = 2t\cos t{\text{ }} \to {\text{(3)}} \\
\]
By differentiating equation (2) both sides with respect to t, we get
\[
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t - 2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {2\sin t} \right) - \dfrac{d}{{dt}}\left( {2t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\dfrac{d}{{dt}}\left( {\sin t} \right) - 2\dfrac{d}{{dt}}\left( {t\cos t} \right) \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\left( {\cos t} \right) - 2\left[ {t\left( { - \sin t} \right) + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t - 2\left[ { - t\sin t + \cos t} \right] \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2\cos t + 2t\sin t - 2\cos t \\
\Rightarrow \dfrac{{dy}}{{dt}} = 2t\sin t{\text{ }} \to {\text{(4)}} \\
\]
By dividing equation (3) by equation (4), we get
\[
\Rightarrow \dfrac{{\left( {\dfrac{{dx}}{{dt}}} \right)}}{{\left( {\dfrac{{dy}}{{dt}}} \right)}} = \dfrac{{2t\cos t}}{{2t\sin t}} \\
\Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{\cos t}}{{\sin t}} \\
\]
According to the definition of cotangent trigonometric function, \[\cot t = \dfrac{{\cos t}}{{\sin t}}\]
\[ \Rightarrow \dfrac{{dx}}{{dy}} = \cot t\]
As we know that the slope of the normal to any curve is given by $ - \dfrac{{dx}}{{dy}}$
Since, $\cot \left( {\dfrac{\pi }{4}} \right) = 1$
Slope of the normal to the given curve at $t = \dfrac{\pi }{4}$ = $ - \dfrac{{dx}}{{dy}} = - \cot t = - \cot \left( {\dfrac{\pi }{4}} \right) = - 1$
Put $t = \dfrac{\pi }{4}$in equations (1) and (2), we get
$ \Rightarrow x = 2\cos \left( {\dfrac{\pi }{4}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\sin \left( {\dfrac{\pi }{4}} \right)$
Using $\sin \left( {\dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ in the above equation, we get
$
\Rightarrow x = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) + 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow x = \dfrac{2}{{\sqrt 2 }} + \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{\left( {2 \times 2} \right) + \pi }}{{2\sqrt 2 }} \\
\Rightarrow x = \dfrac{{4 + \pi }}{{2\sqrt 2 }} \\
$
Also, $
\Rightarrow y = 2\sin \left( {\dfrac{\pi }{4}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow y = 2\left( {\dfrac{1}{{\sqrt 2 }}} \right) - 2\left( {\dfrac{\pi }{4}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow y = \dfrac{2}{{\sqrt 2 }} - \dfrac{\pi }{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{\left( {2 \times 2} \right) - \pi }}{{2\sqrt 2 }} \\
\Rightarrow y = \dfrac{{4 - \pi }}{{2\sqrt 2 }} \\
$
So, the normal to the given curve must be passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$)
As we know that the equation of any straight line having slope m and passing through point (a,b) is given by y-b = m(x-a)
So, the equation of the normal having slope of -1 and passing through the point ($\dfrac{{4 + \pi }}{{2\sqrt 2 }}$,$\dfrac{{4 - \pi }}{{2\sqrt 2 }}$) is given by
\[
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = - 1\left[ {x - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right)} \right] \\
\Rightarrow y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) = \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) - x \\
\Rightarrow x + y - \left( {\dfrac{{4 - \pi }}{{2\sqrt 2 }}} \right) - \left( {\dfrac{{4 + \pi }}{{2\sqrt 2 }}} \right) = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{\left( {4 - \pi } \right) + \left( {4 + \pi } \right)}}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{{4 - \pi + 4 + \pi }}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y - \left[ {\dfrac{8}{{2\sqrt 2 }}} \right] = 0 \\
\Rightarrow x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0 \\
\]
Since, the distance from point $\left( {{x_1},{y_1}} \right)$ of the straight line $ax + by +c = 0$ is given by
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
So, the distance from origin (0,0) of the normal \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] is given by
$
\Rightarrow d = \left| {\dfrac{{\left( {1 \times 0} \right) + \left( {1 \times 0} \right) + \left( { - \dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt {{1^2} + {1^2}} }}} \right| \\
\Rightarrow d = \left| {\dfrac{{0 + 0 - \left( {\dfrac{4}{{\sqrt 2 }}} \right)}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - \dfrac{4}{{\sqrt 2 }}}}{{\sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{{\sqrt 2 \times \sqrt 2 }}} \right| \\
\Rightarrow d = \left| {\dfrac{{ - 4}}{2}} \right| = \left| { - 2} \right| \\
\Rightarrow d = 2 \\
$
Therefore, the distance from origin (0,0) of the normal to the curve $x = 2\cos t + 2t\sin t$, $y = 2\sin t - 2t\cos t$ at $t = \dfrac{\pi }{4}$ is 2.
Hence, option A is correct.
Note- In this particular problem, we have compared the equation of the normal to the given curve i.e., \[x + y + \left( { - \dfrac{4}{{\sqrt 2 }}} \right) = 0\] with the general equation of the straight line i.e., $ax + by = c$ we will get a = 1, y = 1 and c = \[ - \dfrac{4}{{\sqrt 2 }}\]. Also, here the point through which the normal to the given curve is passing is located at $t = \dfrac{\pi }{4}$.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
