
$\displaystyle \lim_{x \to 0}\dfrac{x\tan 2x-2x\tan x}{{{(1-\cos 2x)}^{2}}}$ is equals to,
( a ) 1
( b ) $\dfrac{1}{2}$
( c ) $-\dfrac{1}{3}$
( d ) $\dfrac{1}{4}$
Answer
577.8k+ views
Hint: To solve this question, we will use trigonometric identities and trigonometric limits and values.
On re - arranging the function, we will first make it more simplified and then we will use some substitution of trigonometric identities and hence put the limit to evaluate the value.
Complete step-by-step answer:
Before we solve this question, let's see what the limit of a function means.
Now, we know that a function f ( x ) assigns an output y = f ( x ) for every input x. we say limit of a function is L as x moves closer to p that is, if f ( x ) gets closer and closer to L when f is applied to any input sufficiently close to input p, then limit of function f ( x ) is L at point P.
If the expression obtained after substitution does not provide sufficient information to determine the original limit, then it is said to be an indeterminate form.
Now, we have to evaluate the value of $\displaystyle \lim_{x \to 0}\dfrac{x\tan 2x-2x\tan x}{{{(1-\cos 2x)}^{2}}}$
Now, we know that $1-\cos 2x=2{{\sin }^{2}}x$ and $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$ .
So, $\displaystyle \lim_{x \to 0}\dfrac{x\left( \dfrac{2\tan x}{1-{{\tan }^{2}}x} \right)-2x\tan x}{{{(2si{{n}^{2}}x)}^{2}}}$
On simplifying, we get
$\displaystyle \lim_{x \to 0}\dfrac{2x\tan x}{{{(2si{{n}^{2}}x)}^{2}}}\left( \dfrac{1}{1-{{\tan }^{2}}x}-1 \right)$
$\displaystyle \lim_{x \to 0}\dfrac{2x\tan x}{4si{{n}^{4}}x}\left( \dfrac{1-1+{{\tan }^{2}}x}{1-{{\tan }^{2}}x} \right)$
$\displaystyle \lim_{x \to 0}\dfrac{2x\tan x}{4si{{n}^{4}}x}\left( \dfrac{{{\tan }^{2}}x}{1-{{\tan }^{2}}x} \right)$
$\displaystyle \lim_{x \to 0}\dfrac{2x{{\tan }^{3}}x}{4si{{n}^{4}}x(1-{{\tan }^{2}}x)}$
$\dfrac{1}{2}\displaystyle \lim_{x \to 0}\dfrac{x{{\tan }^{3}}x}{si{{n}^{4}}x(1-{{\tan }^{2}}x)}$
Now, $\dfrac{{{\tan }^{3}}x}{si{{n}^{4}}x}=\dfrac{{{\sin }^{3}}x}{{{\cos }^{3}}x{{\sin }^{4}}x}=\dfrac{1}{{{\cos }^{3}}x\sin x}$,$\dfrac{1}{{{\cos }^{3}}x\sin x}$
So, $\dfrac{1}{2}\displaystyle \lim_{x \to 0}\dfrac{x}{{{\cos }^{3}}x\sin x(1-{{\tan }^{2}}x)}$
We know, $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$
So, on putting limit we get
$\dfrac{1}{2}\times \dfrac{1}{{{\cos }^{3}}0(1-{{\tan }^{2}}0)}$
$\dfrac{1}{2}\times \dfrac{1}{1\times (1-0)}$
$\dfrac{1}{2}\times 1=\dfrac{1}{2}$
So, the correct answer is “Option b”.
Note: To do such a question one must know the definition of limits and it’s application too. Indeterminate form are important topic, so one must know all type of indeterminate forms of limit such as ${{1}^{\infty }}$, ${{0}^{\infty }}$, $\infty \times \infty $, $0\times 0$, $\dfrac{0}{0}$and $\dfrac{\infty }{\infty }$ and always remember that limit only exist if Left hand limit = Right hand limit.
On re - arranging the function, we will first make it more simplified and then we will use some substitution of trigonometric identities and hence put the limit to evaluate the value.
Complete step-by-step answer:
Before we solve this question, let's see what the limit of a function means.
Now, we know that a function f ( x ) assigns an output y = f ( x ) for every input x. we say limit of a function is L as x moves closer to p that is, if f ( x ) gets closer and closer to L when f is applied to any input sufficiently close to input p, then limit of function f ( x ) is L at point P.
If the expression obtained after substitution does not provide sufficient information to determine the original limit, then it is said to be an indeterminate form.
Now, we have to evaluate the value of $\displaystyle \lim_{x \to 0}\dfrac{x\tan 2x-2x\tan x}{{{(1-\cos 2x)}^{2}}}$
Now, we know that $1-\cos 2x=2{{\sin }^{2}}x$ and $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$ .
So, $\displaystyle \lim_{x \to 0}\dfrac{x\left( \dfrac{2\tan x}{1-{{\tan }^{2}}x} \right)-2x\tan x}{{{(2si{{n}^{2}}x)}^{2}}}$
On simplifying, we get
$\displaystyle \lim_{x \to 0}\dfrac{2x\tan x}{{{(2si{{n}^{2}}x)}^{2}}}\left( \dfrac{1}{1-{{\tan }^{2}}x}-1 \right)$
$\displaystyle \lim_{x \to 0}\dfrac{2x\tan x}{4si{{n}^{4}}x}\left( \dfrac{1-1+{{\tan }^{2}}x}{1-{{\tan }^{2}}x} \right)$
$\displaystyle \lim_{x \to 0}\dfrac{2x\tan x}{4si{{n}^{4}}x}\left( \dfrac{{{\tan }^{2}}x}{1-{{\tan }^{2}}x} \right)$
$\displaystyle \lim_{x \to 0}\dfrac{2x{{\tan }^{3}}x}{4si{{n}^{4}}x(1-{{\tan }^{2}}x)}$
$\dfrac{1}{2}\displaystyle \lim_{x \to 0}\dfrac{x{{\tan }^{3}}x}{si{{n}^{4}}x(1-{{\tan }^{2}}x)}$
Now, $\dfrac{{{\tan }^{3}}x}{si{{n}^{4}}x}=\dfrac{{{\sin }^{3}}x}{{{\cos }^{3}}x{{\sin }^{4}}x}=\dfrac{1}{{{\cos }^{3}}x\sin x}$,$\dfrac{1}{{{\cos }^{3}}x\sin x}$
So, $\dfrac{1}{2}\displaystyle \lim_{x \to 0}\dfrac{x}{{{\cos }^{3}}x\sin x(1-{{\tan }^{2}}x)}$
We know, $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$
So, on putting limit we get
$\dfrac{1}{2}\times \dfrac{1}{{{\cos }^{3}}0(1-{{\tan }^{2}}0)}$
$\dfrac{1}{2}\times \dfrac{1}{1\times (1-0)}$
$\dfrac{1}{2}\times 1=\dfrac{1}{2}$
So, the correct answer is “Option b”.
Note: To do such a question one must know the definition of limits and it’s application too. Indeterminate form are important topic, so one must know all type of indeterminate forms of limit such as ${{1}^{\infty }}$, ${{0}^{\infty }}$, $\infty \times \infty $, $0\times 0$, $\dfrac{0}{0}$and $\dfrac{\infty }{\infty }$ and always remember that limit only exist if Left hand limit = Right hand limit.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

