Answer
Verified
428.1k+ views
Hint:From the given complex it can be seen that there is one Fe ion and six cyanide ions. The oxidation number of cyanide ions is +1 and the total charge of the complex is -4, so the oxidation state of the Fe ion can be calculated. Cyanide ion is a strong field ligand.
Complete answer:
The atomic number of iron (Fe) is 26. The outer electronic configuration of Fe is $3{d^6}4{s^2}$. The iron present in the complex ion is in +2 oxidation state, thus the iron loses its two electrons to form $F{e^{2 + }}$ ion. The outer electronic configuration of $F{e^{2 + }}$ is $3{d^6}$.
The ligand present in the complex is cyanide ion which is a strong field ligand which results in pairing.
The two electrons of 3d orbital jump and pair up with the two more unpaired electrons in 3d orbital thus leaving two empty d-orbital, one s-orbital and three p-orbital. Thus the resulting hybridization will be ${d^2}s{p^3}$. The empty orbital is filled with six pairs of electrons from $C{N^ - }$ ion.
As, no unpaired electron is present in any orbital, therefore the compound is diamagnetic.
The complex ion formed ${[Fe{(CN)_6}]^{ - 4}}$, has octahedral geometry.
Note:
During the bonding of electrons, the pairing is done according to Hund’s rule which states that first every orbital will be filled with single electrons only then pairing of electrons is done.
Complete answer:
The atomic number of iron (Fe) is 26. The outer electronic configuration of Fe is $3{d^6}4{s^2}$. The iron present in the complex ion is in +2 oxidation state, thus the iron loses its two electrons to form $F{e^{2 + }}$ ion. The outer electronic configuration of $F{e^{2 + }}$ is $3{d^6}$.
The ligand present in the complex is cyanide ion which is a strong field ligand which results in pairing.
The two electrons of 3d orbital jump and pair up with the two more unpaired electrons in 3d orbital thus leaving two empty d-orbital, one s-orbital and three p-orbital. Thus the resulting hybridization will be ${d^2}s{p^3}$. The empty orbital is filled with six pairs of electrons from $C{N^ - }$ ion.
As, no unpaired electron is present in any orbital, therefore the compound is diamagnetic.
The complex ion formed ${[Fe{(CN)_6}]^{ - 4}}$, has octahedral geometry.
Note:
During the bonding of electrons, the pairing is done according to Hund’s rule which states that first every orbital will be filled with single electrons only then pairing of electrons is done.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE