
Discuss the continuity of the following function at \[x = 0\]. If the function has a removable discontinuity, redefine the function so as to remove the discontinuity.
$f(x) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}}\,for\,x \ne 0} \\
{\log \left( {\dfrac{2}{3}} \right)\,for\,x = 0}
\end{array}} \right.$
Answer
570.3k+ views
Hint: We will find the left-hand limit and rind hand limit of the function at \[x = 0\], using the L’Hospital rule for indeterminate form. Then we will compare it with the value of the function \[x = 0\] to determine the type of discontinuity and if it will be a removable type of discontinuity we will rewrite to make it continuous.
Complete step-by-step answer:
Given data: $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}}\,for\,x \ne 0} \\
{\log \left( {\dfrac{2}{3}} \right)\,for\,x = 0}
\end{array}} \right.$
We know that a function is continuous at a given point if and only if the left-hand limit, right-hand limit, and the value of the function at that point all are equal.
The left-hand limit of the function at \[x = 0\]
$ \Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} f(0 - h)$
Substituting the value of the function, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^{ - h}} - {e^{ - h}}}}{{{6^{ - h}} - 1}}$
Now here substituting $h = 0$ we are getting $\dfrac{0}{0}$ form
So we will use the L’hospital rule which states that if $\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}}$ is of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form then
$ \Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{h'(x)}}{{g'(x)}}$
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^{ - h}} - {e^{ - h}}}}{{{6^{ - h}} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( {\log 4} \right){4^{ - h}} + {e^{ - h}}}}{{ - \left( {\log 6} \right){6^{ - h}}}}$
Now substituting $h = 0$, we get
$ = \dfrac{{ - \left( {\log 4} \right){4^0} + {e^0}}}{{ - \left( {\log 6} \right){6^0}}}$
We know that ${a^0} = 1$, so using this, we get
$ = \dfrac{{ - \left( {\log 4} \right) + 1}}{{ - \left( {\log 6} \right)}}$
Using $\log e = 1$ and $\log A - \log B = \log \left( {\dfrac{A}{B}} \right)$ , we get
$ = \dfrac{{1 - \log 4}}{{ - \left( {\log 6} \right)}}$
On multiplying numerator and denominator with (-1), we get
$ = \dfrac{{\log 4 - 1}}{{\log 6}}$
Now, the right-hand limit of the function at \[x = 0\]
$ \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{h \to 0} f(0 + h)$
Substituting the value of the function, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^h} - {e^h}}}{{{6^h} - 1}}$
Now here substituting $h = 0$ we are getting $\dfrac{0}{0}$ form
So we will use the L’hospital rule which states that if $\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}}$ is of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form then
$ \Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{h'(x)}}{{g'(x)}}$
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^h} - {e^h}}}{{{6^h} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\log 4} \right){4^h} - {e^h}}}{{\left( {\log 6} \right){6^h}}}$
Now substituting $h = 0$, we get
$ = \dfrac{{\left( {\log 4} \right){4^0} - {e^0}}}{{\left( {\log 6} \right){6^0}}}$
We know that ${a^0} = 1$, so using this, we get
$ = \dfrac{{\log 4 - 1}}{{\log 6}}$
Using $\log e = 1$, we get
$ = \dfrac{{1 - \log 4}}{{ - \left( {\log 6} \right)}}$
On multiplying numerator and denominator with (-1), we get
$ = \dfrac{{\log 4 - 1}}{{\log 6}}$
Now it is given that that $f(0) = \log \left( {\dfrac{2}{3}} \right)$
Since the left-hand limit is equal to the right-hand limit, but they are not equal to the value of function removable discontinuity at \[x = 0\]
Redefining the function so that the function becomes continuous at \[x = 0\]
$f(x) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}}\,for\,x \ne 0} \\
{\dfrac{{\log 4 - 1}}{{\log 6}}\,for\,x = 0}
\end{array}} \right.$
Note: While using the L’hospital rule i.e. if $\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}}$ is of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form then
$\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{h'(x)}}{{g'(x)}}$ , most of the students differentiate the whole $\dfrac{{h(x)}}{{g(x)}}$ taking it as a single function which should not be done, we have to differentiate both numerator and the denominator separately, so remember this point to make a more accurate solution.
Complete step-by-step answer:
Given data: $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}}\,for\,x \ne 0} \\
{\log \left( {\dfrac{2}{3}} \right)\,for\,x = 0}
\end{array}} \right.$
We know that a function is continuous at a given point if and only if the left-hand limit, right-hand limit, and the value of the function at that point all are equal.
The left-hand limit of the function at \[x = 0\]
$ \Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} f(0 - h)$
Substituting the value of the function, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^{ - h}} - {e^{ - h}}}}{{{6^{ - h}} - 1}}$
Now here substituting $h = 0$ we are getting $\dfrac{0}{0}$ form
So we will use the L’hospital rule which states that if $\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}}$ is of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form then
$ \Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{h'(x)}}{{g'(x)}}$
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^{ - h}} - {e^{ - h}}}}{{{6^{ - h}} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( {\log 4} \right){4^{ - h}} + {e^{ - h}}}}{{ - \left( {\log 6} \right){6^{ - h}}}}$
Now substituting $h = 0$, we get
$ = \dfrac{{ - \left( {\log 4} \right){4^0} + {e^0}}}{{ - \left( {\log 6} \right){6^0}}}$
We know that ${a^0} = 1$, so using this, we get
$ = \dfrac{{ - \left( {\log 4} \right) + 1}}{{ - \left( {\log 6} \right)}}$
Using $\log e = 1$ and $\log A - \log B = \log \left( {\dfrac{A}{B}} \right)$ , we get
$ = \dfrac{{1 - \log 4}}{{ - \left( {\log 6} \right)}}$
On multiplying numerator and denominator with (-1), we get
$ = \dfrac{{\log 4 - 1}}{{\log 6}}$
Now, the right-hand limit of the function at \[x = 0\]
$ \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{h \to 0} f(0 + h)$
Substituting the value of the function, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^h} - {e^h}}}{{{6^h} - 1}}$
Now here substituting $h = 0$ we are getting $\dfrac{0}{0}$ form
So we will use the L’hospital rule which states that if $\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}}$ is of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form then
$ \Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{h'(x)}}{{g'(x)}}$
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^h} - {e^h}}}{{{6^h} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\log 4} \right){4^h} - {e^h}}}{{\left( {\log 6} \right){6^h}}}$
Now substituting $h = 0$, we get
$ = \dfrac{{\left( {\log 4} \right){4^0} - {e^0}}}{{\left( {\log 6} \right){6^0}}}$
We know that ${a^0} = 1$, so using this, we get
$ = \dfrac{{\log 4 - 1}}{{\log 6}}$
Using $\log e = 1$, we get
$ = \dfrac{{1 - \log 4}}{{ - \left( {\log 6} \right)}}$
On multiplying numerator and denominator with (-1), we get
$ = \dfrac{{\log 4 - 1}}{{\log 6}}$
Now it is given that that $f(0) = \log \left( {\dfrac{2}{3}} \right)$
Since the left-hand limit is equal to the right-hand limit, but they are not equal to the value of function removable discontinuity at \[x = 0\]
Redefining the function so that the function becomes continuous at \[x = 0\]
$f(x) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}}\,for\,x \ne 0} \\
{\dfrac{{\log 4 - 1}}{{\log 6}}\,for\,x = 0}
\end{array}} \right.$
Note: While using the L’hospital rule i.e. if $\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}}$ is of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form then
$\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{h'(x)}}{{g'(x)}}$ , most of the students differentiate the whole $\dfrac{{h(x)}}{{g(x)}}$ taking it as a single function which should not be done, we have to differentiate both numerator and the denominator separately, so remember this point to make a more accurate solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

