
Differentiate with respective to x:
\[\log \left( {\sec x\,\, + \,\,\tan x} \right)\]
Answer
591.9k+ views
Hint: We will suppose to the given value \[v{\text{ }} = {\text{ }}log{\text{ }}\left( {sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x} \right)\]. Further taking log both sides, then differentiate the given value with respect to x.
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
Complete step by step solution:-
let \[v{\text{ }} = {\text{ }}log{\text{ }}\left( {sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x} \right)\]
Differentiate both side with respect to x, we will get
$
\dfrac{d}{{dx}}v = \dfrac{d}{{dx}}\left( {\log 1\sec + \tan x} \right) \\
\dfrac{d}{{dx}} = \dfrac{1}{{\sec x + tax}} \times \dfrac{d}{{dx}}\left( {\sec x + \tan x} \right) \\
= \dfrac{1}{{\left( {\sec x + \tan x} \right)}} \times \sec x.\tan x + {\sec ^2}x \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\left( {\sec x - \tan x + {{\sec }^2}x} \right) \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\sec x\left( {\tan x + \sec x} \right) \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\left( {\sec x + \tan x} \right)}}\sec x\left( {\sec x + \tan x} \right) \\
\dfrac{{dv}}{{dx}} = \sec x \\
$
Additional Information: Differentiation comes down to figuring out how one variable changes with respect to another variable. Some differentiation rule are:
(i) The constant rule: for any fixed real number $c$.\[\dfrac{d}{{dx}}\left\{ {c.f(x)} \right\} = c.\dfrac{d}{{dx}}\left\{ {f(x)} \right\}\]
(ii) The power rule: $\dfrac{d}{{dx}}\left\{ {{x^n}} \right\} = n{x^{n - 1}}$
Note: We have to be careful to use the appropriate formula of logarithm in accordance to the problem given.Some of them are:
\[\left( i \right)\log {(a)^m} = m\log a\]
\[\left( {ii} \right)\log a.\log b = \log \left( {a + 3} \right)\]
\[
\left( {iii} \right)\log \left( {\dfrac{a}{b}} \right) = \log a - \log b \\
\left( {iv} \right)\log 1 = 0 \\
\left( v \right)\log e = 1 \\
\]
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
Complete step by step solution:-
let \[v{\text{ }} = {\text{ }}log{\text{ }}\left( {sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x} \right)\]
Differentiate both side with respect to x, we will get
$
\dfrac{d}{{dx}}v = \dfrac{d}{{dx}}\left( {\log 1\sec + \tan x} \right) \\
\dfrac{d}{{dx}} = \dfrac{1}{{\sec x + tax}} \times \dfrac{d}{{dx}}\left( {\sec x + \tan x} \right) \\
= \dfrac{1}{{\left( {\sec x + \tan x} \right)}} \times \sec x.\tan x + {\sec ^2}x \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\left( {\sec x - \tan x + {{\sec }^2}x} \right) \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\sec x\left( {\tan x + \sec x} \right) \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\left( {\sec x + \tan x} \right)}}\sec x\left( {\sec x + \tan x} \right) \\
\dfrac{{dv}}{{dx}} = \sec x \\
$
Additional Information: Differentiation comes down to figuring out how one variable changes with respect to another variable. Some differentiation rule are:
(i) The constant rule: for any fixed real number $c$.\[\dfrac{d}{{dx}}\left\{ {c.f(x)} \right\} = c.\dfrac{d}{{dx}}\left\{ {f(x)} \right\}\]
(ii) The power rule: $\dfrac{d}{{dx}}\left\{ {{x^n}} \right\} = n{x^{n - 1}}$
Note: We have to be careful to use the appropriate formula of logarithm in accordance to the problem given.Some of them are:
\[\left( i \right)\log {(a)^m} = m\log a\]
\[\left( {ii} \right)\log a.\log b = \log \left( {a + 3} \right)\]
\[
\left( {iii} \right)\log \left( {\dfrac{a}{b}} \right) = \log a - \log b \\
\left( {iv} \right)\log 1 = 0 \\
\left( v \right)\log e = 1 \\
\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

