
Differentiate with respective to x:
\[\log \left( {\sec x\,\, + \,\,\tan x} \right)\]
Answer
512.1k+ views
Hint: We will suppose to the given value \[v{\text{ }} = {\text{ }}log{\text{ }}\left( {sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x} \right)\]. Further taking log both sides, then differentiate the given value with respect to x.
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
Complete step by step solution:-
let \[v{\text{ }} = {\text{ }}log{\text{ }}\left( {sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x} \right)\]
Differentiate both side with respect to x, we will get
$
\dfrac{d}{{dx}}v = \dfrac{d}{{dx}}\left( {\log 1\sec + \tan x} \right) \\
\dfrac{d}{{dx}} = \dfrac{1}{{\sec x + tax}} \times \dfrac{d}{{dx}}\left( {\sec x + \tan x} \right) \\
= \dfrac{1}{{\left( {\sec x + \tan x} \right)}} \times \sec x.\tan x + {\sec ^2}x \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\left( {\sec x - \tan x + {{\sec }^2}x} \right) \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\sec x\left( {\tan x + \sec x} \right) \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\left( {\sec x + \tan x} \right)}}\sec x\left( {\sec x + \tan x} \right) \\
\dfrac{{dv}}{{dx}} = \sec x \\
$
Additional Information: Differentiation comes down to figuring out how one variable changes with respect to another variable. Some differentiation rule are:
(i) The constant rule: for any fixed real number $c$.\[\dfrac{d}{{dx}}\left\{ {c.f(x)} \right\} = c.\dfrac{d}{{dx}}\left\{ {f(x)} \right\}\]
(ii) The power rule: $\dfrac{d}{{dx}}\left\{ {{x^n}} \right\} = n{x^{n - 1}}$
Note: We have to be careful to use the appropriate formula of logarithm in accordance to the problem given.Some of them are:
\[\left( i \right)\log {(a)^m} = m\log a\]
\[\left( {ii} \right)\log a.\log b = \log \left( {a + 3} \right)\]
\[
\left( {iii} \right)\log \left( {\dfrac{a}{b}} \right) = \log a - \log b \\
\left( {iv} \right)\log 1 = 0 \\
\left( v \right)\log e = 1 \\
\]
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
Complete step by step solution:-
let \[v{\text{ }} = {\text{ }}log{\text{ }}\left( {sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x} \right)\]
Differentiate both side with respect to x, we will get
$
\dfrac{d}{{dx}}v = \dfrac{d}{{dx}}\left( {\log 1\sec + \tan x} \right) \\
\dfrac{d}{{dx}} = \dfrac{1}{{\sec x + tax}} \times \dfrac{d}{{dx}}\left( {\sec x + \tan x} \right) \\
= \dfrac{1}{{\left( {\sec x + \tan x} \right)}} \times \sec x.\tan x + {\sec ^2}x \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\left( {\sec x - \tan x + {{\sec }^2}x} \right) \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\sec x\left( {\tan x + \sec x} \right) \\
\dfrac{{dv}}{{dx}} = \dfrac{1}{{\left( {\sec x + \tan x} \right)}}\sec x\left( {\sec x + \tan x} \right) \\
\dfrac{{dv}}{{dx}} = \sec x \\
$
Additional Information: Differentiation comes down to figuring out how one variable changes with respect to another variable. Some differentiation rule are:
(i) The constant rule: for any fixed real number $c$.\[\dfrac{d}{{dx}}\left\{ {c.f(x)} \right\} = c.\dfrac{d}{{dx}}\left\{ {f(x)} \right\}\]
(ii) The power rule: $\dfrac{d}{{dx}}\left\{ {{x^n}} \right\} = n{x^{n - 1}}$
Note: We have to be careful to use the appropriate formula of logarithm in accordance to the problem given.Some of them are:
\[\left( i \right)\log {(a)^m} = m\log a\]
\[\left( {ii} \right)\log a.\log b = \log \left( {a + 3} \right)\]
\[
\left( {iii} \right)\log \left( {\dfrac{a}{b}} \right) = \log a - \log b \\
\left( {iv} \right)\log 1 = 0 \\
\left( v \right)\log e = 1 \\
\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE
