
How do you differentiate the function $ y=\tan \left[ \ln \left( ax+b \right) \right] $ ?
Answer
560.4k+ views
Hint: We first define the chain rule and how the differentiation of composite function works. We take differentiation of the main function with respect to the intermediate function and then take differentiation of the intermediate function with respect to $ x $ . we take multiplication of these two different differentiated values.
Complete step by step answer:
We differentiate the given function $ y=\tan \left[ \ln \left( ax+b \right) \right] $ with respect to $ x $ using the chain rule. We take $ y=f\left( x \right)=\tan \left[ \ln \left( ax+b \right) \right] $ .
Here we have a composite function where the main function is $ g\left( x \right)=\tan x $ and the other function is $ h\left( x \right)=\ln \left( ax+b \right) $ .
We have $ goh\left( x \right)=g\left( \ln \left( ax+b \right) \right)=\tan \left[ \ln \left( ax+b \right) \right] $ .
We take this as ours $ f\left( x \right)=\tan \left[ \ln \left( ax+b \right) \right] $ .
We need to find the value of $ \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ \tan \left[ \ln \left( ax+b \right) \right] \right] $ . We know $ f\left( x \right)=goh\left( x \right) $ .
Differentiating $ f\left( x \right)=goh\left( x \right) $ , we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule.
The chain rule allows to differentiate with respect to the function $ h\left( x \right) $ instead of $ x $ and after that we need to take the differentiated form of $ h\left( x \right) $ with respect to $ x $ .
For the function $ f\left( x \right)=\tan \left[ \ln \left( ax+b \right) \right] $ , we take differentiation of $ f\left( x \right)=\tan \left[ \ln \left( ax+b \right) \right] $ with respect to the function $ h\left( x \right)=\ln \left( ax+b \right) $ instead of $ x $ and after that we need to take the differentiated form of $ h\left( x \right)=\ln \left( ax+b \right) $ with respect to $ x $ .
We know that differentiation of $ g\left( x \right)=\tan x $ is $ {{g}^{'}}\left( x \right)={{\sec }^{2}}x $ and differentiation of $ h\left( x \right)=\ln \left( ax+b \right) $ is \[{{h}^{'}}\left( x \right)=\dfrac{a}{ax+b}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ \ln \left( ax+b \right) \right]}\left[ \tan \left[ \ln \left( ax+b \right) \right] \right]\times \dfrac{d\left[ \ln \left( ax+b \right) \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]={{\sec }^{2}}\left[ \ln \left( ax+b \right) \right]\left[ \dfrac{a}{ax+b} \right]=\dfrac{a{{\sec }^{2}}\left[ \ln \left( ax+b \right) \right]}{ax+b}\]
Therefore, differentiation of $ y=\tan \left[ \ln \left( ax+b \right) \right] $ is \[\dfrac{a{{\sec }^{2}}\left[ \ln \left( ax+b \right) \right]}{ax+b}\].
Note:
We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step by step answer:
We differentiate the given function $ y=\tan \left[ \ln \left( ax+b \right) \right] $ with respect to $ x $ using the chain rule. We take $ y=f\left( x \right)=\tan \left[ \ln \left( ax+b \right) \right] $ .
Here we have a composite function where the main function is $ g\left( x \right)=\tan x $ and the other function is $ h\left( x \right)=\ln \left( ax+b \right) $ .
We have $ goh\left( x \right)=g\left( \ln \left( ax+b \right) \right)=\tan \left[ \ln \left( ax+b \right) \right] $ .
We take this as ours $ f\left( x \right)=\tan \left[ \ln \left( ax+b \right) \right] $ .
We need to find the value of $ \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ \tan \left[ \ln \left( ax+b \right) \right] \right] $ . We know $ f\left( x \right)=goh\left( x \right) $ .
Differentiating $ f\left( x \right)=goh\left( x \right) $ , we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule.
The chain rule allows to differentiate with respect to the function $ h\left( x \right) $ instead of $ x $ and after that we need to take the differentiated form of $ h\left( x \right) $ with respect to $ x $ .
For the function $ f\left( x \right)=\tan \left[ \ln \left( ax+b \right) \right] $ , we take differentiation of $ f\left( x \right)=\tan \left[ \ln \left( ax+b \right) \right] $ with respect to the function $ h\left( x \right)=\ln \left( ax+b \right) $ instead of $ x $ and after that we need to take the differentiated form of $ h\left( x \right)=\ln \left( ax+b \right) $ with respect to $ x $ .
We know that differentiation of $ g\left( x \right)=\tan x $ is $ {{g}^{'}}\left( x \right)={{\sec }^{2}}x $ and differentiation of $ h\left( x \right)=\ln \left( ax+b \right) $ is \[{{h}^{'}}\left( x \right)=\dfrac{a}{ax+b}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ \ln \left( ax+b \right) \right]}\left[ \tan \left[ \ln \left( ax+b \right) \right] \right]\times \dfrac{d\left[ \ln \left( ax+b \right) \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]={{\sec }^{2}}\left[ \ln \left( ax+b \right) \right]\left[ \dfrac{a}{ax+b} \right]=\dfrac{a{{\sec }^{2}}\left[ \ln \left( ax+b \right) \right]}{ax+b}\]
Therefore, differentiation of $ y=\tan \left[ \ln \left( ax+b \right) \right] $ is \[\dfrac{a{{\sec }^{2}}\left[ \ln \left( ax+b \right) \right]}{ax+b}\].
Note:
We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

