
Differentiate the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\].
Answer
591k+ views
Hint: In this question, in order to find differentiation the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] we will suppose that the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] is equal to \[f\left( x \right)\] and the function \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] is equals to the function \[g\left( x \right)\]. Now the problem is to find the differential of the function \[f\left( x \right)\] with respect to \[g\left( x \right)\]. That is we have to find the \[\dfrac{df\left( x \right)}{dg\left( x \right)}\]. Now since both \[f\left( x \right)\] and \[g\left( x \right)\] are function of \[x\], thus we have \[\dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{d}{dx}f\left( x \right)\div \dfrac{d}{dx}g\left( x \right)\].Now in order to find the derivatives \[\dfrac{d}{dx}f\left( x \right)\] and \[\dfrac{d}{dx}g\left( x \right)\] we will substitute \[x=\sin t\] and then solve the problem.
Complete step by step answer:
Let us suppose that the function \[f\left( x \right)\] is given by \[f\left( x \right)={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\].
And the function \[g\left( x \right)\] is given by \[g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\].
Now I will have to find the differential of the function \[f\left( x \right)\] with respect to \[g\left( x \right)\].
That is we have to find the value of \[\dfrac{df\left( x \right)}{dg\left( x \right)}\].
Also since both the functions \[f\left( x \right)\] and \[g\left( x \right)\] are function of \[x\], thus we have \[\dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{d}{dx}f\left( x \right)\div \dfrac{d}{dx}g\left( x \right)...........(1)\]
So now we have to find the derivatives \[\dfrac{d}{dx}f\left( x \right)\] and \[\dfrac{d}{dx}g\left( x \right)\].
Let us first suppose that \[x=\sin t\].
Now in order to calculate \[\dfrac{d}{dx}f\left( x \right)\], we will substitute the value \[x=\sin t\] in \[f\left( x \right)\]. Then we get
\[\begin{align}
& f\left( x \right)={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\sin t}{\sqrt{1-{{\sin }^{2}}t}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\sin t}{\cos t} \right) \\
& ={{\tan }^{-1}}\left( \tan t \right) \\
& =t \\
& ={{\sin }^{-1}}x
\end{align}\]
Therefore on differentiating \[f\left( x \right)\] with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right) \\
& =\dfrac{1}{\sqrt{1-{{x}^{2}}}}.........(2)
\end{align}\]
Now in order to calculate \[\dfrac{d}{dx}g\left( x \right)\], we will substitute the value \[x=\sin t\] in \[g\left( x \right)\].
Since we know that \[\sin 2t=2\sin t\cos t\], then we get
\[\begin{align}
& g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) \\
& ={{\sin }^{-1}}\left( 2\sin t\sqrt{1-{{\sin }^{2}}t} \right) \\
& ={{\sin }^{-1}}\left( 2\sin t\cos t \right) \\
& ={{\sin }^{-1}}\left( \sin 2t \right) \\
& =2t \\
& =2{{\sin }^{-1}}x
\end{align}\]
Therefore on differentiating \[g\left( x \right)\] with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\left( 2{{\sin }^{-1}}x \right) \\
& =\dfrac{2}{\sqrt{1-{{x}^{2}}}}.......(3)
\end{align}\]
Now on substituting the values in equation (2) and equation (3) in (1), we get
\[\begin{align}
& \dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\div \dfrac{2}{\sqrt{1-{{x}^{2}}}} \\
& =\dfrac{1}{\sqrt{1-{{x}^{2}}}}\times \dfrac{\sqrt{1-{{x}^{2}}}}{2} \\
& =\dfrac{1}{2}
\end{align}\]
Therefore we get that the derivative of the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] is equals to \[\dfrac{1}{2}\].
Note:
In this problem, we cannot directly calculate the derivative of the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. Also in this problem we have \[x\in \left[ -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right]\]. Because when we are substituting the value \[x=\sin t\] in \[g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\], we will have \[t\in \left[ -\pi ,\pi \right]\] which implies \[2t\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]. And therefore we have \[{{\sin }^{-1}}\left( \sin 2t \right)=2t\].
Complete step by step answer:
Let us suppose that the function \[f\left( x \right)\] is given by \[f\left( x \right)={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\].
And the function \[g\left( x \right)\] is given by \[g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\].
Now I will have to find the differential of the function \[f\left( x \right)\] with respect to \[g\left( x \right)\].
That is we have to find the value of \[\dfrac{df\left( x \right)}{dg\left( x \right)}\].
Also since both the functions \[f\left( x \right)\] and \[g\left( x \right)\] are function of \[x\], thus we have \[\dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{d}{dx}f\left( x \right)\div \dfrac{d}{dx}g\left( x \right)...........(1)\]
So now we have to find the derivatives \[\dfrac{d}{dx}f\left( x \right)\] and \[\dfrac{d}{dx}g\left( x \right)\].
Let us first suppose that \[x=\sin t\].
Now in order to calculate \[\dfrac{d}{dx}f\left( x \right)\], we will substitute the value \[x=\sin t\] in \[f\left( x \right)\]. Then we get
\[\begin{align}
& f\left( x \right)={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\sin t}{\sqrt{1-{{\sin }^{2}}t}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\sin t}{\cos t} \right) \\
& ={{\tan }^{-1}}\left( \tan t \right) \\
& =t \\
& ={{\sin }^{-1}}x
\end{align}\]
Therefore on differentiating \[f\left( x \right)\] with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right) \\
& =\dfrac{1}{\sqrt{1-{{x}^{2}}}}.........(2)
\end{align}\]
Now in order to calculate \[\dfrac{d}{dx}g\left( x \right)\], we will substitute the value \[x=\sin t\] in \[g\left( x \right)\].
Since we know that \[\sin 2t=2\sin t\cos t\], then we get
\[\begin{align}
& g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) \\
& ={{\sin }^{-1}}\left( 2\sin t\sqrt{1-{{\sin }^{2}}t} \right) \\
& ={{\sin }^{-1}}\left( 2\sin t\cos t \right) \\
& ={{\sin }^{-1}}\left( \sin 2t \right) \\
& =2t \\
& =2{{\sin }^{-1}}x
\end{align}\]
Therefore on differentiating \[g\left( x \right)\] with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\left( 2{{\sin }^{-1}}x \right) \\
& =\dfrac{2}{\sqrt{1-{{x}^{2}}}}.......(3)
\end{align}\]
Now on substituting the values in equation (2) and equation (3) in (1), we get
\[\begin{align}
& \dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\div \dfrac{2}{\sqrt{1-{{x}^{2}}}} \\
& =\dfrac{1}{\sqrt{1-{{x}^{2}}}}\times \dfrac{\sqrt{1-{{x}^{2}}}}{2} \\
& =\dfrac{1}{2}
\end{align}\]
Therefore we get that the derivative of the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] is equals to \[\dfrac{1}{2}\].
Note:
In this problem, we cannot directly calculate the derivative of the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. Also in this problem we have \[x\in \left[ -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right]\]. Because when we are substituting the value \[x=\sin t\] in \[g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\], we will have \[t\in \left[ -\pi ,\pi \right]\] which implies \[2t\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]. And therefore we have \[{{\sin }^{-1}}\left( \sin 2t \right)=2t\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

