
Differentiate the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\].
Answer
576.3k+ views
Hint: In this question, in order to find differentiation the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] we will suppose that the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] is equal to \[f\left( x \right)\] and the function \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] is equals to the function \[g\left( x \right)\]. Now the problem is to find the differential of the function \[f\left( x \right)\] with respect to \[g\left( x \right)\]. That is we have to find the \[\dfrac{df\left( x \right)}{dg\left( x \right)}\]. Now since both \[f\left( x \right)\] and \[g\left( x \right)\] are function of \[x\], thus we have \[\dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{d}{dx}f\left( x \right)\div \dfrac{d}{dx}g\left( x \right)\].Now in order to find the derivatives \[\dfrac{d}{dx}f\left( x \right)\] and \[\dfrac{d}{dx}g\left( x \right)\] we will substitute \[x=\sin t\] and then solve the problem.
Complete step by step answer:
Let us suppose that the function \[f\left( x \right)\] is given by \[f\left( x \right)={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\].
And the function \[g\left( x \right)\] is given by \[g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\].
Now I will have to find the differential of the function \[f\left( x \right)\] with respect to \[g\left( x \right)\].
That is we have to find the value of \[\dfrac{df\left( x \right)}{dg\left( x \right)}\].
Also since both the functions \[f\left( x \right)\] and \[g\left( x \right)\] are function of \[x\], thus we have \[\dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{d}{dx}f\left( x \right)\div \dfrac{d}{dx}g\left( x \right)...........(1)\]
So now we have to find the derivatives \[\dfrac{d}{dx}f\left( x \right)\] and \[\dfrac{d}{dx}g\left( x \right)\].
Let us first suppose that \[x=\sin t\].
Now in order to calculate \[\dfrac{d}{dx}f\left( x \right)\], we will substitute the value \[x=\sin t\] in \[f\left( x \right)\]. Then we get
\[\begin{align}
& f\left( x \right)={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\sin t}{\sqrt{1-{{\sin }^{2}}t}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\sin t}{\cos t} \right) \\
& ={{\tan }^{-1}}\left( \tan t \right) \\
& =t \\
& ={{\sin }^{-1}}x
\end{align}\]
Therefore on differentiating \[f\left( x \right)\] with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right) \\
& =\dfrac{1}{\sqrt{1-{{x}^{2}}}}.........(2)
\end{align}\]
Now in order to calculate \[\dfrac{d}{dx}g\left( x \right)\], we will substitute the value \[x=\sin t\] in \[g\left( x \right)\].
Since we know that \[\sin 2t=2\sin t\cos t\], then we get
\[\begin{align}
& g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) \\
& ={{\sin }^{-1}}\left( 2\sin t\sqrt{1-{{\sin }^{2}}t} \right) \\
& ={{\sin }^{-1}}\left( 2\sin t\cos t \right) \\
& ={{\sin }^{-1}}\left( \sin 2t \right) \\
& =2t \\
& =2{{\sin }^{-1}}x
\end{align}\]
Therefore on differentiating \[g\left( x \right)\] with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\left( 2{{\sin }^{-1}}x \right) \\
& =\dfrac{2}{\sqrt{1-{{x}^{2}}}}.......(3)
\end{align}\]
Now on substituting the values in equation (2) and equation (3) in (1), we get
\[\begin{align}
& \dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\div \dfrac{2}{\sqrt{1-{{x}^{2}}}} \\
& =\dfrac{1}{\sqrt{1-{{x}^{2}}}}\times \dfrac{\sqrt{1-{{x}^{2}}}}{2} \\
& =\dfrac{1}{2}
\end{align}\]
Therefore we get that the derivative of the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] is equals to \[\dfrac{1}{2}\].
Note:
In this problem, we cannot directly calculate the derivative of the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. Also in this problem we have \[x\in \left[ -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right]\]. Because when we are substituting the value \[x=\sin t\] in \[g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\], we will have \[t\in \left[ -\pi ,\pi \right]\] which implies \[2t\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]. And therefore we have \[{{\sin }^{-1}}\left( \sin 2t \right)=2t\].
Complete step by step answer:
Let us suppose that the function \[f\left( x \right)\] is given by \[f\left( x \right)={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\].
And the function \[g\left( x \right)\] is given by \[g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\].
Now I will have to find the differential of the function \[f\left( x \right)\] with respect to \[g\left( x \right)\].
That is we have to find the value of \[\dfrac{df\left( x \right)}{dg\left( x \right)}\].
Also since both the functions \[f\left( x \right)\] and \[g\left( x \right)\] are function of \[x\], thus we have \[\dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{d}{dx}f\left( x \right)\div \dfrac{d}{dx}g\left( x \right)...........(1)\]
So now we have to find the derivatives \[\dfrac{d}{dx}f\left( x \right)\] and \[\dfrac{d}{dx}g\left( x \right)\].
Let us first suppose that \[x=\sin t\].
Now in order to calculate \[\dfrac{d}{dx}f\left( x \right)\], we will substitute the value \[x=\sin t\] in \[f\left( x \right)\]. Then we get
\[\begin{align}
& f\left( x \right)={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\sin t}{\sqrt{1-{{\sin }^{2}}t}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\sin t}{\cos t} \right) \\
& ={{\tan }^{-1}}\left( \tan t \right) \\
& =t \\
& ={{\sin }^{-1}}x
\end{align}\]
Therefore on differentiating \[f\left( x \right)\] with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right) \\
& =\dfrac{1}{\sqrt{1-{{x}^{2}}}}.........(2)
\end{align}\]
Now in order to calculate \[\dfrac{d}{dx}g\left( x \right)\], we will substitute the value \[x=\sin t\] in \[g\left( x \right)\].
Since we know that \[\sin 2t=2\sin t\cos t\], then we get
\[\begin{align}
& g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) \\
& ={{\sin }^{-1}}\left( 2\sin t\sqrt{1-{{\sin }^{2}}t} \right) \\
& ={{\sin }^{-1}}\left( 2\sin t\cos t \right) \\
& ={{\sin }^{-1}}\left( \sin 2t \right) \\
& =2t \\
& =2{{\sin }^{-1}}x
\end{align}\]
Therefore on differentiating \[g\left( x \right)\] with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\left( 2{{\sin }^{-1}}x \right) \\
& =\dfrac{2}{\sqrt{1-{{x}^{2}}}}.......(3)
\end{align}\]
Now on substituting the values in equation (2) and equation (3) in (1), we get
\[\begin{align}
& \dfrac{df\left( x \right)}{dg\left( x \right)}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\div \dfrac{2}{\sqrt{1-{{x}^{2}}}} \\
& =\dfrac{1}{\sqrt{1-{{x}^{2}}}}\times \dfrac{\sqrt{1-{{x}^{2}}}}{2} \\
& =\dfrac{1}{2}
\end{align}\]
Therefore we get that the derivative of the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] is equals to \[\dfrac{1}{2}\].
Note:
In this problem, we cannot directly calculate the derivative of the function \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\] with respect to \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. Also in this problem we have \[x\in \left[ -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right]\]. Because when we are substituting the value \[x=\sin t\] in \[g\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\], we will have \[t\in \left[ -\pi ,\pi \right]\] which implies \[2t\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]. And therefore we have \[{{\sin }^{-1}}\left( \sin 2t \right)=2t\].
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

