
Differentiate the following functions with respect to $ x $ . (a) $ \sin \left( {{x}^{2}}+5 \right) $ (b) $ \cos \left( \sin x \right) $ \[\]
Answer
555.9k+ views
Hint: We recall the definition of composite function $ gof\left( x \right)=g\left( f\left( x \right) \right) $ . We recall the chain rule of differentiation $ \dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} $ where $ y=gof $ and $ u=f\left( x \right) $ . We first find $ u=f\left( x \right) $ as the function inside the bracket and $ y $ as the given function and then differentiate using chain rule.\[\]
Complete step-by-step answer:
If the functions $ f\left( x \right),g\left( x \right) $ are defined within sets $ f:A\to B $ and $ g:B\to C $ then the composite function from A to C is defend as $ g\left( f\left( x \right) \right) $ within sets $ gof:A\to C $ . If we denote $ g\left( f\left( x \right) \right)=y $ and $ f\left( x \right)=u $ then we can differentiate the composite function using chain rule as
\[\dfrac{d}{dx}g\left( f\left( x \right) \right)=\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}\]
(a) We are asked to differentiate the function $ \sin \left( {{x}^{2}}+5 \right) $ . We see that it is a composite function which is made by functions $ \sin x $ and $ {{x}^{2}}+5 $ . Let us assign the function in the bracket as $ f\left( x \right)={{x}^{2}}+5=u $ and $ g\left( x \right)=\sin x $ . So we have $ g\left( f\left( x \right) \right)=g\left( {{x}^{2}}+5 \right)=\sin \left( {{x}^{2}}+5 \right)=y $ . We differentiate using chain rule to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} \\
& \Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\dfrac{d\left( \sin \left( {{x}^{2}}+5 \right) \right)}{d\left( \left( {{x}^{2}}+5 \right) \right)}\times \dfrac{d}{dx}\left( {{x}^{2}}+5 \right) \\
& \\
\end{align}\]
We use the known differentiation $ \dfrac{d}{du}\left( \sin u \right)=\cos u $ for $ u={{x}^{2}}+5 $ to have;
\[\Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\cos \left( {{x}^{2}}+5 \right)\times \dfrac{d}{dx}\left( {{x}^{2}}+5 \right)\]
We use the sum rule of differentiation and have;
\[\Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\cos \left( x+5 \right)\times \dfrac{d}{dx}{{x}^{2}}+\dfrac{d}{dx}5\]
We use the differentiation formula $ \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} $ for $ n=2 $ and the information that differentiation of constant like 5 in the above step is zero to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\cos \left( x+5 \right)\times 2{{x}^{2-1}}+0 \\
& \Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\cos \left( x+5 \right)\times 2x \\
& \Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=2x\cos \left( x+5 \right) \\
\end{align}\]
(b) We are asked to differentiate the function $ \cos \left( \sin x \right) $ . We see that it is a composite function which is made by functions $ \cos x $ and $ \sin x $ . Let us assign the function in the bracket as $ f\left( x \right)=\sin x=u $ and $ g\left( x \right)=\cos x $ . So we have $ g\left( f\left( x \right) \right)=g\left( \sin x \right)=\cos \left( \sin x \right)=y $ . We differentiate using chain rule to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} \\
& \Rightarrow \dfrac{d}{dx}\cos \left( \sin x \right)=\dfrac{d\left( \cos \left( \sin x \right) \right)}{d\left( \sin x \right)}\times \dfrac{d}{dx}\sin x \\
\end{align}\]
We use the known differentiation $ \dfrac{d}{du}\left( \sin u \right)=\cos u $ for $ u=x $ and $ \dfrac{d}{du}\cos u=-\sin u $ for $ u=\sin x $ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\cos \left( \sin x \right)=-\sin \left( \sin x \right)\times \cos x \\
& \Rightarrow \dfrac{d}{dx}\cos \left( \sin x \right)=-\cos x\sin \left( \sin x \right) \\
\end{align}\]
Note: If $ f\left( x \right) $ and $ g\left( x \right) $ are functions are well defined functions then we know from sum rule of differentiation that $ \dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\left\{ f\left( x \right)+g\left( x \right) \right\} $ . We note that the domain of given functions has to be compatible for chain rule. Here the domain of all given functions $ \sin x,\cos x,{{x}^{2}}+5 $ is real number set $ \mathsf{\mathbb{R}} $ and hence compatible. The chain rule is also stated as $ {{\left( fog \right)}^{'}}=\left( {{f}^{'}}og \right)\cdot {{g}^{'}} $
Complete step-by-step answer:
If the functions $ f\left( x \right),g\left( x \right) $ are defined within sets $ f:A\to B $ and $ g:B\to C $ then the composite function from A to C is defend as $ g\left( f\left( x \right) \right) $ within sets $ gof:A\to C $ . If we denote $ g\left( f\left( x \right) \right)=y $ and $ f\left( x \right)=u $ then we can differentiate the composite function using chain rule as
\[\dfrac{d}{dx}g\left( f\left( x \right) \right)=\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}\]
(a) We are asked to differentiate the function $ \sin \left( {{x}^{2}}+5 \right) $ . We see that it is a composite function which is made by functions $ \sin x $ and $ {{x}^{2}}+5 $ . Let us assign the function in the bracket as $ f\left( x \right)={{x}^{2}}+5=u $ and $ g\left( x \right)=\sin x $ . So we have $ g\left( f\left( x \right) \right)=g\left( {{x}^{2}}+5 \right)=\sin \left( {{x}^{2}}+5 \right)=y $ . We differentiate using chain rule to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} \\
& \Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\dfrac{d\left( \sin \left( {{x}^{2}}+5 \right) \right)}{d\left( \left( {{x}^{2}}+5 \right) \right)}\times \dfrac{d}{dx}\left( {{x}^{2}}+5 \right) \\
& \\
\end{align}\]
We use the known differentiation $ \dfrac{d}{du}\left( \sin u \right)=\cos u $ for $ u={{x}^{2}}+5 $ to have;
\[\Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\cos \left( {{x}^{2}}+5 \right)\times \dfrac{d}{dx}\left( {{x}^{2}}+5 \right)\]
We use the sum rule of differentiation and have;
\[\Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\cos \left( x+5 \right)\times \dfrac{d}{dx}{{x}^{2}}+\dfrac{d}{dx}5\]
We use the differentiation formula $ \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} $ for $ n=2 $ and the information that differentiation of constant like 5 in the above step is zero to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\cos \left( x+5 \right)\times 2{{x}^{2-1}}+0 \\
& \Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=\cos \left( x+5 \right)\times 2x \\
& \Rightarrow \dfrac{d}{dx}\sin \left( {{x}^{2}}+5 \right)=2x\cos \left( x+5 \right) \\
\end{align}\]
(b) We are asked to differentiate the function $ \cos \left( \sin x \right) $ . We see that it is a composite function which is made by functions $ \cos x $ and $ \sin x $ . Let us assign the function in the bracket as $ f\left( x \right)=\sin x=u $ and $ g\left( x \right)=\cos x $ . So we have $ g\left( f\left( x \right) \right)=g\left( \sin x \right)=\cos \left( \sin x \right)=y $ . We differentiate using chain rule to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} \\
& \Rightarrow \dfrac{d}{dx}\cos \left( \sin x \right)=\dfrac{d\left( \cos \left( \sin x \right) \right)}{d\left( \sin x \right)}\times \dfrac{d}{dx}\sin x \\
\end{align}\]
We use the known differentiation $ \dfrac{d}{du}\left( \sin u \right)=\cos u $ for $ u=x $ and $ \dfrac{d}{du}\cos u=-\sin u $ for $ u=\sin x $ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\cos \left( \sin x \right)=-\sin \left( \sin x \right)\times \cos x \\
& \Rightarrow \dfrac{d}{dx}\cos \left( \sin x \right)=-\cos x\sin \left( \sin x \right) \\
\end{align}\]
Note: If $ f\left( x \right) $ and $ g\left( x \right) $ are functions are well defined functions then we know from sum rule of differentiation that $ \dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\left\{ f\left( x \right)+g\left( x \right) \right\} $ . We note that the domain of given functions has to be compatible for chain rule. Here the domain of all given functions $ \sin x,\cos x,{{x}^{2}}+5 $ is real number set $ \mathsf{\mathbb{R}} $ and hence compatible. The chain rule is also stated as $ {{\left( fog \right)}^{'}}=\left( {{f}^{'}}og \right)\cdot {{g}^{'}} $
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

