Differentiate $\dfrac{{x\log x}}{{{e^x}}}$ with respect to $x$
Answer
Verified
467.7k+ views
Hint: The problem can be solved with the Substitution Method. We have to substitute $\log x = t$. So, we will get $x = {e^t}$. Then put this value in the equation given the question and differentiate it.
Complete step-by-step answer:
Firstly, we will differentiate $\log x$
Substitute t at the place of $\log x$
$ \Rightarrow \log x = t$
$ \Rightarrow x = {e^t}$
Then, differentiating both sides, we get
$ \Rightarrow d\log x = dt$
$ \Rightarrow \dfrac{1}{x}dx = dt$
$ \Rightarrow \left( {\dfrac{{dt}}{{dx}}} \right) = x$
Putting the above value in $\dfrac{{x\log x}}{{{e^x}}}$, we get
$ \Rightarrow \dfrac{{{e^t}t}}{{{e^{{e^t}}}}} = {e^{(t - {e^t})}}t$
Differentiating w.r.t t,
Since the differentiation of ${e^x}$ is ${e^x}$
$ \Rightarrow 1.{e^{t - {e^t}}} + {e^{t - {e^t}}}(1 - {e^t})$
Further, we know that $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{1}{x}$
So, put the value of t and multiply the whole equation by $\dfrac{1}{x}$.
$ \Rightarrow {\left( e \right)^{t - {e^t}}}(1 + t(1 - {e^t}))\dfrac{1}{x}$
$ \Rightarrow \dfrac{{{e^t}}}{{{e^{{e^t}}}}}(1 + t - t{e^t})\dfrac{1}{x}$
Putting the value $t = \log x$ in the above equation, we get
$ \Rightarrow \dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$
Therefore $\dfrac{{x\log x}}{{{e^x}}}$ is equal to $\dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$.
Note: Additional Information,
The differentiation of ${e^x}\log x$
This can be solved with successive differentiation concept,
$ \Rightarrow \dfrac{d}{{dx}}({e^x}\log x)$
$ \Rightarrow {e^x}\dfrac{d}{{dx}}(\log x) + \log x\dfrac{d}{{dx}}({e^x})$
$ \Rightarrow {e^x}\left( {\dfrac{1}{x}} \right) + logx({e^x})$
$ \Rightarrow {e^x}(\log x + \dfrac{1}{x})$
Complete step-by-step answer:
Firstly, we will differentiate $\log x$
Substitute t at the place of $\log x$
$ \Rightarrow \log x = t$
$ \Rightarrow x = {e^t}$
Then, differentiating both sides, we get
$ \Rightarrow d\log x = dt$
$ \Rightarrow \dfrac{1}{x}dx = dt$
$ \Rightarrow \left( {\dfrac{{dt}}{{dx}}} \right) = x$
Putting the above value in $\dfrac{{x\log x}}{{{e^x}}}$, we get
$ \Rightarrow \dfrac{{{e^t}t}}{{{e^{{e^t}}}}} = {e^{(t - {e^t})}}t$
Differentiating w.r.t t,
Since the differentiation of ${e^x}$ is ${e^x}$
$ \Rightarrow 1.{e^{t - {e^t}}} + {e^{t - {e^t}}}(1 - {e^t})$
Further, we know that $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{1}{x}$
So, put the value of t and multiply the whole equation by $\dfrac{1}{x}$.
$ \Rightarrow {\left( e \right)^{t - {e^t}}}(1 + t(1 - {e^t}))\dfrac{1}{x}$
$ \Rightarrow \dfrac{{{e^t}}}{{{e^{{e^t}}}}}(1 + t - t{e^t})\dfrac{1}{x}$
Putting the value $t = \log x$ in the above equation, we get
$ \Rightarrow \dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$
Therefore $\dfrac{{x\log x}}{{{e^x}}}$ is equal to $\dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$.
Note: Additional Information,
The differentiation of ${e^x}\log x$
This can be solved with successive differentiation concept,
$ \Rightarrow \dfrac{d}{{dx}}({e^x}\log x)$
$ \Rightarrow {e^x}\dfrac{d}{{dx}}(\log x) + \log x\dfrac{d}{{dx}}({e^x})$
$ \Rightarrow {e^x}\left( {\dfrac{1}{x}} \right) + logx({e^x})$
$ \Rightarrow {e^x}(\log x + \dfrac{1}{x})$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE