
Differentiate $\dfrac{{x\log x}}{{{e^x}}}$ with respect to $x$
Answer
566.4k+ views
Hint: The problem can be solved with the Substitution Method. We have to substitute $\log x = t$. So, we will get $x = {e^t}$. Then put this value in the equation given the question and differentiate it.
Complete step-by-step answer:
Firstly, we will differentiate $\log x$
Substitute t at the place of $\log x$
$ \Rightarrow \log x = t$
$ \Rightarrow x = {e^t}$
Then, differentiating both sides, we get
$ \Rightarrow d\log x = dt$
$ \Rightarrow \dfrac{1}{x}dx = dt$
$ \Rightarrow \left( {\dfrac{{dt}}{{dx}}} \right) = x$
Putting the above value in $\dfrac{{x\log x}}{{{e^x}}}$, we get
$ \Rightarrow \dfrac{{{e^t}t}}{{{e^{{e^t}}}}} = {e^{(t - {e^t})}}t$
Differentiating w.r.t t,
Since the differentiation of ${e^x}$ is ${e^x}$
$ \Rightarrow 1.{e^{t - {e^t}}} + {e^{t - {e^t}}}(1 - {e^t})$
Further, we know that $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{1}{x}$
So, put the value of t and multiply the whole equation by $\dfrac{1}{x}$.
$ \Rightarrow {\left( e \right)^{t - {e^t}}}(1 + t(1 - {e^t}))\dfrac{1}{x}$
$ \Rightarrow \dfrac{{{e^t}}}{{{e^{{e^t}}}}}(1 + t - t{e^t})\dfrac{1}{x}$
Putting the value $t = \log x$ in the above equation, we get
$ \Rightarrow \dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$
Therefore $\dfrac{{x\log x}}{{{e^x}}}$ is equal to $\dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$.
Note: Additional Information,
The differentiation of ${e^x}\log x$
This can be solved with successive differentiation concept,
$ \Rightarrow \dfrac{d}{{dx}}({e^x}\log x)$
$ \Rightarrow {e^x}\dfrac{d}{{dx}}(\log x) + \log x\dfrac{d}{{dx}}({e^x})$
$ \Rightarrow {e^x}\left( {\dfrac{1}{x}} \right) + logx({e^x})$
$ \Rightarrow {e^x}(\log x + \dfrac{1}{x})$
Complete step-by-step answer:
Firstly, we will differentiate $\log x$
Substitute t at the place of $\log x$
$ \Rightarrow \log x = t$
$ \Rightarrow x = {e^t}$
Then, differentiating both sides, we get
$ \Rightarrow d\log x = dt$
$ \Rightarrow \dfrac{1}{x}dx = dt$
$ \Rightarrow \left( {\dfrac{{dt}}{{dx}}} \right) = x$
Putting the above value in $\dfrac{{x\log x}}{{{e^x}}}$, we get
$ \Rightarrow \dfrac{{{e^t}t}}{{{e^{{e^t}}}}} = {e^{(t - {e^t})}}t$
Differentiating w.r.t t,
Since the differentiation of ${e^x}$ is ${e^x}$
$ \Rightarrow 1.{e^{t - {e^t}}} + {e^{t - {e^t}}}(1 - {e^t})$
Further, we know that $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{1}{x}$
So, put the value of t and multiply the whole equation by $\dfrac{1}{x}$.
$ \Rightarrow {\left( e \right)^{t - {e^t}}}(1 + t(1 - {e^t}))\dfrac{1}{x}$
$ \Rightarrow \dfrac{{{e^t}}}{{{e^{{e^t}}}}}(1 + t - t{e^t})\dfrac{1}{x}$
Putting the value $t = \log x$ in the above equation, we get
$ \Rightarrow \dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$
Therefore $\dfrac{{x\log x}}{{{e^x}}}$ is equal to $\dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$.
Note: Additional Information,
The differentiation of ${e^x}\log x$
This can be solved with successive differentiation concept,
$ \Rightarrow \dfrac{d}{{dx}}({e^x}\log x)$
$ \Rightarrow {e^x}\dfrac{d}{{dx}}(\log x) + \log x\dfrac{d}{{dx}}({e^x})$
$ \Rightarrow {e^x}\left( {\dfrac{1}{x}} \right) + logx({e^x})$
$ \Rightarrow {e^x}(\log x + \dfrac{1}{x})$
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

