Answer
Verified
429.3k+ views
Hint: The problem can be solved with the Substitution Method. We have to substitute $\log x = t$. So, we will get $x = {e^t}$. Then put this value in the equation given the question and differentiate it.
Complete step-by-step answer:
Firstly, we will differentiate $\log x$
Substitute t at the place of $\log x$
$ \Rightarrow \log x = t$
$ \Rightarrow x = {e^t}$
Then, differentiating both sides, we get
$ \Rightarrow d\log x = dt$
$ \Rightarrow \dfrac{1}{x}dx = dt$
$ \Rightarrow \left( {\dfrac{{dt}}{{dx}}} \right) = x$
Putting the above value in $\dfrac{{x\log x}}{{{e^x}}}$, we get
$ \Rightarrow \dfrac{{{e^t}t}}{{{e^{{e^t}}}}} = {e^{(t - {e^t})}}t$
Differentiating w.r.t t,
Since the differentiation of ${e^x}$ is ${e^x}$
$ \Rightarrow 1.{e^{t - {e^t}}} + {e^{t - {e^t}}}(1 - {e^t})$
Further, we know that $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{1}{x}$
So, put the value of t and multiply the whole equation by $\dfrac{1}{x}$.
$ \Rightarrow {\left( e \right)^{t - {e^t}}}(1 + t(1 - {e^t}))\dfrac{1}{x}$
$ \Rightarrow \dfrac{{{e^t}}}{{{e^{{e^t}}}}}(1 + t - t{e^t})\dfrac{1}{x}$
Putting the value $t = \log x$ in the above equation, we get
$ \Rightarrow \dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$
Therefore $\dfrac{{x\log x}}{{{e^x}}}$ is equal to $\dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$.
Note: Additional Information,
The differentiation of ${e^x}\log x$
This can be solved with successive differentiation concept,
$ \Rightarrow \dfrac{d}{{dx}}({e^x}\log x)$
$ \Rightarrow {e^x}\dfrac{d}{{dx}}(\log x) + \log x\dfrac{d}{{dx}}({e^x})$
$ \Rightarrow {e^x}\left( {\dfrac{1}{x}} \right) + logx({e^x})$
$ \Rightarrow {e^x}(\log x + \dfrac{1}{x})$
Complete step-by-step answer:
Firstly, we will differentiate $\log x$
Substitute t at the place of $\log x$
$ \Rightarrow \log x = t$
$ \Rightarrow x = {e^t}$
Then, differentiating both sides, we get
$ \Rightarrow d\log x = dt$
$ \Rightarrow \dfrac{1}{x}dx = dt$
$ \Rightarrow \left( {\dfrac{{dt}}{{dx}}} \right) = x$
Putting the above value in $\dfrac{{x\log x}}{{{e^x}}}$, we get
$ \Rightarrow \dfrac{{{e^t}t}}{{{e^{{e^t}}}}} = {e^{(t - {e^t})}}t$
Differentiating w.r.t t,
Since the differentiation of ${e^x}$ is ${e^x}$
$ \Rightarrow 1.{e^{t - {e^t}}} + {e^{t - {e^t}}}(1 - {e^t})$
Further, we know that $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{1}{x}$
So, put the value of t and multiply the whole equation by $\dfrac{1}{x}$.
$ \Rightarrow {\left( e \right)^{t - {e^t}}}(1 + t(1 - {e^t}))\dfrac{1}{x}$
$ \Rightarrow \dfrac{{{e^t}}}{{{e^{{e^t}}}}}(1 + t - t{e^t})\dfrac{1}{x}$
Putting the value $t = \log x$ in the above equation, we get
$ \Rightarrow \dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$
Therefore $\dfrac{{x\log x}}{{{e^x}}}$ is equal to $\dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$.
Note: Additional Information,
The differentiation of ${e^x}\log x$
This can be solved with successive differentiation concept,
$ \Rightarrow \dfrac{d}{{dx}}({e^x}\log x)$
$ \Rightarrow {e^x}\dfrac{d}{{dx}}(\log x) + \log x\dfrac{d}{{dx}}({e^x})$
$ \Rightarrow {e^x}\left( {\dfrac{1}{x}} \right) + logx({e^x})$
$ \Rightarrow {e^x}(\log x + \dfrac{1}{x})$
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations