
Diagonals of a rhombus are 12cm and 16cm respectively, then find the side of the rhombus and its perimeter.
Answer
604.2k+ views
Hint: Rhombus is a two dimensional shape with four equal sides and four angles which can or cannot be $90{}^\circ $, but opposite angles are always same, and both diagonals of a rhombus are perpendicular and bisect each other.
Complete step by step answer:
According to given data,
Shape ABCD is a rhombus and O is the intersecting point of both diagonals which is bisecting both diagonals, and both diagonals are perpendicular to each other according to definition.
$\begin{align}
& \Rightarrow AO=\dfrac{16}{2}cm=8cm \\
& \Rightarrow BO=\dfrac{12}{2}cm=6cm \\
\end{align}$
So, $\Delta AOB$ is a right triangle, and using Pythagoras Theorem we can find the length of AB which is a side of rhombus.
According to Pythagoras Theorem,
\[\begin{align}
& A{{B}^{2}}=B{{O}^{2}}+A{{O}^{2}} \\
& AB=\sqrt{{{6}^{2}}+{{8}^{2}}}cm \\
& AB=\sqrt{36+64}=\sqrt{100}=10cm \\
\end{align}\]
And we know the perimeter of the rhombus is equal to 4a where ‘a’ is the length of a side.
So, Perimeter of rhombus $=4a$
$\begin{align}
& =4\times 10cm \\
& =40cm \\
\end{align}$
Hence, the side is 10cm and the perimeter is 40cm.
Note: Here we should have appropriate knowledge of general shapes, some time lack of knowledge can confuse us in easy problems. By the way here we can use direct formula to find out the length of side which is $4A{{B}^{2}}=A{{C}^{2}}+B{{D}^{2}}$.
Complete step by step answer:
According to given data,
Shape ABCD is a rhombus and O is the intersecting point of both diagonals which is bisecting both diagonals, and both diagonals are perpendicular to each other according to definition.
$\begin{align}
& \Rightarrow AO=\dfrac{16}{2}cm=8cm \\
& \Rightarrow BO=\dfrac{12}{2}cm=6cm \\
\end{align}$
So, $\Delta AOB$ is a right triangle, and using Pythagoras Theorem we can find the length of AB which is a side of rhombus.
According to Pythagoras Theorem,
\[\begin{align}
& A{{B}^{2}}=B{{O}^{2}}+A{{O}^{2}} \\
& AB=\sqrt{{{6}^{2}}+{{8}^{2}}}cm \\
& AB=\sqrt{36+64}=\sqrt{100}=10cm \\
\end{align}\]
And we know the perimeter of the rhombus is equal to 4a where ‘a’ is the length of a side.
So, Perimeter of rhombus $=4a$
$\begin{align}
& =4\times 10cm \\
& =40cm \\
\end{align}$
Hence, the side is 10cm and the perimeter is 40cm.
Note: Here we should have appropriate knowledge of general shapes, some time lack of knowledge can confuse us in easy problems. By the way here we can use direct formula to find out the length of side which is $4A{{B}^{2}}=A{{C}^{2}}+B{{D}^{2}}$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

