Answer
Verified
476.7k+ views
Hint: In this question we have to find the number of diagonals for the specific given options, a diagonal is a line segment joining any two opposite corners of a polygon whether it is a square, rhombus, regular hexagon etc. The general formula for the number of diagonals of n-sided polygon is $\dfrac{{n\left( {n - 3} \right)}}{2}$. Use this concept to get the answer.
Complete step-by-step answer:
The general formula for number of diagonals (d) in any figure is
(n-3) multiply by the number of vertices and divide by 2.
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\left( a \right)$ A convex quadrilateral
As we know in a convex quadrilateral there are four sides (see figure)
$ \Rightarrow n = 2$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{4\left( {4 - 3} \right)}}{2} = \dfrac{4}{2} = 2$
$\left( b \right)$ A regular hexagon
As we know in a convex quadrilateral there are six sides (see figure)
$ \Rightarrow n = 6$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{6\left( {6 - 3} \right)}}{2} = \dfrac{{6 \times 3}}{2} = 9$
$\left( c \right)$ A triangle.
As we know in a convex quadrilateral there are three sides (see figure)
$ \Rightarrow n = 3$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{3\left( {3 - 3} \right)}}{2} = \dfrac{0}{2} = 0$
So, these are the required diagonals in the following figures.
Note: Whenever we face such types of problems the key concept is the basic understanding of the definition of diagonal of a polygon. The gist of direct formula for diagonal of a n-sided polygon will eventually help you in getting the right track to reach the answer accurately.
Complete step-by-step answer:
The general formula for number of diagonals (d) in any figure is
(n-3) multiply by the number of vertices and divide by 2.
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\left( a \right)$ A convex quadrilateral
As we know in a convex quadrilateral there are four sides (see figure)
$ \Rightarrow n = 2$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{4\left( {4 - 3} \right)}}{2} = \dfrac{4}{2} = 2$
$\left( b \right)$ A regular hexagon
As we know in a convex quadrilateral there are six sides (see figure)
$ \Rightarrow n = 6$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{6\left( {6 - 3} \right)}}{2} = \dfrac{{6 \times 3}}{2} = 9$
$\left( c \right)$ A triangle.
As we know in a convex quadrilateral there are three sides (see figure)
$ \Rightarrow n = 3$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{3\left( {3 - 3} \right)}}{2} = \dfrac{0}{2} = 0$
So, these are the required diagonals in the following figures.
Note: Whenever we face such types of problems the key concept is the basic understanding of the definition of diagonal of a polygon. The gist of direct formula for diagonal of a n-sided polygon will eventually help you in getting the right track to reach the answer accurately.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths