
How many diagonals does a triangle have?
$
(a){\text{ 0}} \\
(b){\text{ 1}} \\
(c){\text{ 2}} \\
(d){\text{ 3}} \\
$
Answer
603.6k+ views
Hint: In this question we are being told to find the number of diagonals of a triangle. Now the number of diagonals of any n sided polygon can be found out using the direct formula $d = \dfrac{{n\left( {n - 3} \right)}}{2}$ where d is the number of diagonals and n is the number of sides of the polygon.
Complete step-by-step answer:
The general formula for number of diagonals (d) in any figure are
(n-3) multiply by the number of vertices and divide by 2.
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2}$ (Where n is the number of vertices)
As we know in a triangle there are three sides (see figure)
$ \Rightarrow n = 3$
Therefore number of diagonals in a triangle are
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{3\left( {3 - 3} \right)}}{2} = \dfrac{0}{2} = 0$
So the number of diagonals in a triangle are 0.
Hence option (A) is correct.
Note: Whenever we face such types of problems the key concept is simply to have the understanding of the direct formula to find the total number of diagonals. Such types of questions are generally direct formula based thus it is always advised to have a good gist of them. This will help to get on the right track and save a lot of time.
Complete step-by-step answer:
The general formula for number of diagonals (d) in any figure are
(n-3) multiply by the number of vertices and divide by 2.
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2}$ (Where n is the number of vertices)
As we know in a triangle there are three sides (see figure)
$ \Rightarrow n = 3$
Therefore number of diagonals in a triangle are
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{3\left( {3 - 3} \right)}}{2} = \dfrac{0}{2} = 0$
So the number of diagonals in a triangle are 0.
Hence option (A) is correct.
Note: Whenever we face such types of problems the key concept is simply to have the understanding of the direct formula to find the total number of diagonals. Such types of questions are generally direct formula based thus it is always advised to have a good gist of them. This will help to get on the right track and save a lot of time.
Recently Updated Pages
Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE


