
\[\dfrac{cosec\left( 90{}^\circ -x \right)sin\left( 180{}^\circ -x \right)cot\left( 360{}^\circ -x \right)}{sec\left( 180{}^\circ +x \right)tan\left( 90{}^\circ +x \right)sin\left( -x \right)}=1\]
Answer
543k+ views
Hint: In this question, we have to prove the given equation. The equation contains quite a few trigonometric identities which could not be used as it is. Neither could we use the value of these trigonometric functions since exact angles are known. So, in order to prove that the left hand side is equal to the right hand side, we will simplify each trigonometric function using trigonometric identities. We can also derive these identities while doing the solution. We use trigonometric ratios for various angles of the form (90°-x), (90°+x) and so on.
Complete step by step solution :
We have to prove the equation
\[\dfrac{cosec\left( 90{}^\circ -x \right)sin\left( 180{}^\circ -x \right)cot\left( 360{}^\circ -x \right)}{sec\left( 180{}^\circ +x \right)tan\left( 90{}^\circ +x \right)sin\left( -x \right)}=1\]
The equation involves trigonometric identities
In order to prove this we will consider from LHS and then equate it to RHS .
\[LHS=\dfrac{cosec\left( 90{}^\circ -x \right)sin\left( 180{}^\circ -x \right)cot\left( 360{}^\circ -x \right)}{sec\left( 180{}^\circ +x \right)tan\left( 90{}^\circ +x \right)sin\left( -x \right)}\]
Now using trigonometric identities , we know that
\[cosec\left( 90{}^\circ -x \right)=\dfrac{1}{sin\left( 90{}^\circ -x \right)}\]
And using trigonometric identity for \[sin\left( 90{}^\circ -x \right)=cosx\]
Therefore
\[cosec\left( 90{}^\circ -x \right)=\dfrac{1}{cosx}=secx\]
And \[sin\left( 180{}^\circ -x \right)=sin\left( 90{}^\circ -\left( 90{}^\circ -x \right) \right)\]
\[\begin{align}
& =\cos\left( 90{}^\circ -x \right) \\
& ~=\sin \text{ }x \\
\end{align}\]
(Since \[\cos\left( 90{}^\circ -x \right)=\sin x\])
\[\begin{align}
& \begin{array}{*{35}{l}}
cot\left( 360{}^\circ -x \right)=-cotx \\
sec\left( 180{}^\circ +x \right)=-secx \\
tan\text{ }\left( 90{}^\circ +x \right)=-cotx \\
\end{array} \\
& sin\left( -x \right)=-sinx \\
\end{align}\]
Now we will substitute all the trigonometric functions with their values .
On substituting , we get
\[\begin{align}
& LHS=\dfrac{cosec\left( 90{}^\circ -x \right)sin\left( 180{}^\circ -x \right)cot\left( 360{}^\circ -x \right)}{sec\left( 180{}^\circ +x \right)tan\left( 90{}^\circ +x \right)sin\left( -x \right)} \\
& =\dfrac{\sec x\cdot \sin x\cdot (-\cot x)}{(-\sec x)\cdot (-\cot x)\cdot (-\sin x)} \\
\end{align}\]
secx , sinx and cotx gets cancelled from both numerator and denominator
Hence we get
\[\begin{align}
& LHS=\dfrac{\sec x\cdot \sin x\cdot (-\cot x)}{(-\sec x)\cdot (-\cot x)\cdot (-\sin x)} \\
& =\dfrac{-1}{-1} \\
& =1 \\
& =RHS \\
\end{align}\]
Hence proved.
Note :
It is important to note that we can derive all the trigonometric ratios for all angles using the value for sin, cos and tan but for convenience, it is always better to memorize the values for other trigonometric ratios for all types of angles as \[\left( 90-x \right)\text{ },\text{ }\left( 90+x \right)\text{ },\text{ }\left( 180-x \right)\text{ },\text{ }\left( 180+x \right)\text{ },\text{ }\left( 270-x \right)\text{ },\text{ }\left( 270+x \right)\text{ },\text{ }\left( 360-x \right)\] and \[\left( 360+x \right)\]. Another point to be noted is to take care of all the signs in the trigonometric identities.
Complete step by step solution :
We have to prove the equation
\[\dfrac{cosec\left( 90{}^\circ -x \right)sin\left( 180{}^\circ -x \right)cot\left( 360{}^\circ -x \right)}{sec\left( 180{}^\circ +x \right)tan\left( 90{}^\circ +x \right)sin\left( -x \right)}=1\]
The equation involves trigonometric identities
In order to prove this we will consider from LHS and then equate it to RHS .
\[LHS=\dfrac{cosec\left( 90{}^\circ -x \right)sin\left( 180{}^\circ -x \right)cot\left( 360{}^\circ -x \right)}{sec\left( 180{}^\circ +x \right)tan\left( 90{}^\circ +x \right)sin\left( -x \right)}\]
Now using trigonometric identities , we know that
\[cosec\left( 90{}^\circ -x \right)=\dfrac{1}{sin\left( 90{}^\circ -x \right)}\]
And using trigonometric identity for \[sin\left( 90{}^\circ -x \right)=cosx\]
Therefore
\[cosec\left( 90{}^\circ -x \right)=\dfrac{1}{cosx}=secx\]
And \[sin\left( 180{}^\circ -x \right)=sin\left( 90{}^\circ -\left( 90{}^\circ -x \right) \right)\]
\[\begin{align}
& =\cos\left( 90{}^\circ -x \right) \\
& ~=\sin \text{ }x \\
\end{align}\]
(Since \[\cos\left( 90{}^\circ -x \right)=\sin x\])
\[\begin{align}
& \begin{array}{*{35}{l}}
cot\left( 360{}^\circ -x \right)=-cotx \\
sec\left( 180{}^\circ +x \right)=-secx \\
tan\text{ }\left( 90{}^\circ +x \right)=-cotx \\
\end{array} \\
& sin\left( -x \right)=-sinx \\
\end{align}\]
Now we will substitute all the trigonometric functions with their values .
On substituting , we get
\[\begin{align}
& LHS=\dfrac{cosec\left( 90{}^\circ -x \right)sin\left( 180{}^\circ -x \right)cot\left( 360{}^\circ -x \right)}{sec\left( 180{}^\circ +x \right)tan\left( 90{}^\circ +x \right)sin\left( -x \right)} \\
& =\dfrac{\sec x\cdot \sin x\cdot (-\cot x)}{(-\sec x)\cdot (-\cot x)\cdot (-\sin x)} \\
\end{align}\]
secx , sinx and cotx gets cancelled from both numerator and denominator
Hence we get
\[\begin{align}
& LHS=\dfrac{\sec x\cdot \sin x\cdot (-\cot x)}{(-\sec x)\cdot (-\cot x)\cdot (-\sin x)} \\
& =\dfrac{-1}{-1} \\
& =1 \\
& =RHS \\
\end{align}\]
Hence proved.
Note :
It is important to note that we can derive all the trigonometric ratios for all angles using the value for sin, cos and tan but for convenience, it is always better to memorize the values for other trigonometric ratios for all types of angles as \[\left( 90-x \right)\text{ },\text{ }\left( 90+x \right)\text{ },\text{ }\left( 180-x \right)\text{ },\text{ }\left( 180+x \right)\text{ },\text{ }\left( 270-x \right)\text{ },\text{ }\left( 270+x \right)\text{ },\text{ }\left( 360-x \right)\] and \[\left( 360+x \right)\]. Another point to be noted is to take care of all the signs in the trigonometric identities.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

