Answer
Verified
391.8k+ views
Hint: While solving the equation make sure to remember \[x \ne 1,x \ne 2,x \ne 3\]
excluding the above values x can take any values as x =1 or x= 2,3 will make denominator zero.
Complete step-by-step answer:
Given that,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} + \dfrac{1}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
We will first find the LCM of the terms on LHS, for that we will multiply numerator and denominator of the first fraction by \[\left( {x - 3} \right)\] and that of second by \[\left( {x - 1} \right)\].
\[ \Rightarrow \dfrac{{\left( {x - 3} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} + \dfrac{{\left( {x - 1} \right)}}{{\left( {x - 2} \right)\left( {x - 3} \right)\left( {x - 1} \right)}} = \dfrac{2}{3}\]
Now since the denominators are same we can add the numerators directly,
\[ \Rightarrow \dfrac{{\left( {x - 3} \right) + \left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
Simplifying the terms in the numerator,
\[ \Rightarrow \dfrac{{x - 3 + x - 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
On adding the terms in the numerator,
\[ \Rightarrow \dfrac{{2x - 4}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
Taking two common from the terms in the numerator of the LHS,
\[ \Rightarrow \dfrac{{2\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
Cancelling 2 from both the sides,
\[ \Rightarrow \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{1}{3}\]
On cross multiplying we get,
\[ \Rightarrow 3\left( {x - 2} \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\]
Now we will solve the RHS separately,
\[ \Rightarrow \left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]\left( {x - 3} \right)\]
Now on multiplying the first two brackets,
\[ \Rightarrow \left[ {x\left( {x - 2} \right) - 1\left( {x - 2} \right)} \right]\left( {x - 3} \right)\]
Now multiplying the terms inside the bracket,
\[ \Rightarrow \left[ {{x^2} - 2x - x + 2} \right]\left( {x - 3} \right)\]
On adding the same terms,
\[ \Rightarrow \left[ {{x^2} - 3x + 2} \right]\left( {x - 3} \right)\]
Now multiply the outside bracket with the terms inside the bracket,
\[ \Rightarrow x\left( {{x^2} - 3x + 2} \right) - 3\left( {{x^2} - 3x + 2} \right)\]
On multiplying we get,
\[ \Rightarrow {x^3} - 3{x^2} + 2x - 3{x^2} + 9x - 6\]
On adding the same terms,
\[ \Rightarrow {x^3} - 6{x^2} + 11x - 6\]
This is the simplified product of the three brackets,
\[ \Rightarrow 3\left( {x - 2} \right) = {x^3} - 6{x^2} + 11x - 6\]
This is to be further simplified,
\[ \Rightarrow 3x - 6 = {x^3} - 6{x^2} + 11x - 6\]
Taking all the terms on one side,
\[ \Rightarrow {x^3} - 6{x^2} + 11x - 3x - 6 + 6 = 0\]
On solving we get,
\[ \Rightarrow {x^3} - 6{x^2} + 8x = 0\]
Dividing both sides by x we get,
\[ \Rightarrow {x^2} - 6x + 8 = 0\]
This is quadratic equation, we will solve this factorisation method,
\[ \Rightarrow {x^2} - 4x - 2x + 8 = 0\]
Taking x common form first two terms and 2 common from last two terms,
\[ \Rightarrow x\left( {x - 4} \right) - 2\left( {x - 4} \right) = 0\]
Taking the brackets separately,
\[ \Rightarrow \left( {x - 4} \right)\left( {x - 2} \right) = 0\]
Thus the value of x can be 4 or 2. But in the question they have mentioned it cannot be 2.
So the final answer is that the value of x is 4.
So, the correct answer is “x = 4”.
Note: Note that, the simplification of the fractions is the most important step. Also note that the quadratic equation can also be solved by quadratic formula. But here the factorization is used because it was not difficult to factorize the numbers. The factors should be such that their product should be the last term and sum should be the middle term.
excluding the above values x can take any values as x =1 or x= 2,3 will make denominator zero.
Complete step-by-step answer:
Given that,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} + \dfrac{1}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
We will first find the LCM of the terms on LHS, for that we will multiply numerator and denominator of the first fraction by \[\left( {x - 3} \right)\] and that of second by \[\left( {x - 1} \right)\].
\[ \Rightarrow \dfrac{{\left( {x - 3} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} + \dfrac{{\left( {x - 1} \right)}}{{\left( {x - 2} \right)\left( {x - 3} \right)\left( {x - 1} \right)}} = \dfrac{2}{3}\]
Now since the denominators are same we can add the numerators directly,
\[ \Rightarrow \dfrac{{\left( {x - 3} \right) + \left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
Simplifying the terms in the numerator,
\[ \Rightarrow \dfrac{{x - 3 + x - 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
On adding the terms in the numerator,
\[ \Rightarrow \dfrac{{2x - 4}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
Taking two common from the terms in the numerator of the LHS,
\[ \Rightarrow \dfrac{{2\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{2}{3}\]
Cancelling 2 from both the sides,
\[ \Rightarrow \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{1}{3}\]
On cross multiplying we get,
\[ \Rightarrow 3\left( {x - 2} \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\]
Now we will solve the RHS separately,
\[ \Rightarrow \left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]\left( {x - 3} \right)\]
Now on multiplying the first two brackets,
\[ \Rightarrow \left[ {x\left( {x - 2} \right) - 1\left( {x - 2} \right)} \right]\left( {x - 3} \right)\]
Now multiplying the terms inside the bracket,
\[ \Rightarrow \left[ {{x^2} - 2x - x + 2} \right]\left( {x - 3} \right)\]
On adding the same terms,
\[ \Rightarrow \left[ {{x^2} - 3x + 2} \right]\left( {x - 3} \right)\]
Now multiply the outside bracket with the terms inside the bracket,
\[ \Rightarrow x\left( {{x^2} - 3x + 2} \right) - 3\left( {{x^2} - 3x + 2} \right)\]
On multiplying we get,
\[ \Rightarrow {x^3} - 3{x^2} + 2x - 3{x^2} + 9x - 6\]
On adding the same terms,
\[ \Rightarrow {x^3} - 6{x^2} + 11x - 6\]
This is the simplified product of the three brackets,
\[ \Rightarrow 3\left( {x - 2} \right) = {x^3} - 6{x^2} + 11x - 6\]
This is to be further simplified,
\[ \Rightarrow 3x - 6 = {x^3} - 6{x^2} + 11x - 6\]
Taking all the terms on one side,
\[ \Rightarrow {x^3} - 6{x^2} + 11x - 3x - 6 + 6 = 0\]
On solving we get,
\[ \Rightarrow {x^3} - 6{x^2} + 8x = 0\]
Dividing both sides by x we get,
\[ \Rightarrow {x^2} - 6x + 8 = 0\]
This is quadratic equation, we will solve this factorisation method,
\[ \Rightarrow {x^2} - 4x - 2x + 8 = 0\]
Taking x common form first two terms and 2 common from last two terms,
\[ \Rightarrow x\left( {x - 4} \right) - 2\left( {x - 4} \right) = 0\]
Taking the brackets separately,
\[ \Rightarrow \left( {x - 4} \right)\left( {x - 2} \right) = 0\]
Thus the value of x can be 4 or 2. But in the question they have mentioned it cannot be 2.
So the final answer is that the value of x is 4.
So, the correct answer is “x = 4”.
Note: Note that, the simplification of the fractions is the most important step. Also note that the quadratic equation can also be solved by quadratic formula. But here the factorization is used because it was not difficult to factorize the numbers. The factors should be such that their product should be the last term and sum should be the middle term.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE