
How do you determine whether the sequence 3, 12, 48, 192, … is geometric and if it is, what is the common ratio?
Answer
516.8k+ views
Hint:
The sequence whose terms are obtained by the multiplication of a number to its previous term called common ratio or multiplier. Such a sequence is the geometric sequence. The generalized form of terms of a geometric sequence is \[{{a}_{n}}={{a}_{0}}{{q}^{n-1}}\], this gives the nth term where \[{{a}_{0}}\] is the first term and q is the multiplier.
Complete step by step answer:
In the given question, the sequence is 3, 12, 48, 192, …
Now, let the first term,\[{{a}_{0}}\] = 3. The second term is \[{{a}_{1}}\]=12, third term is \[{{a}_{2}}\] = 48 and the fourth term is \[{{a}_{3}}\] = 192.
Now let us divide the second term with first term then we get
\[\dfrac{{{a}_{1}}}{{{a}_{0}}}\] = \[\dfrac{12}{3}\] which is equal to 4 ---(1)
Now we divide the third term by second term then we get
\[\dfrac{{{a}_{2}}}{{{a}_{1}}}\] = \[\dfrac{48}{12}\] which is also equal to 4 --(2)
Now we divide the fourth term by the third term then we get
\[\dfrac{{{a}_{3}}}{{{a}_{2}}}\] = \[\dfrac{192}{48}\] which is also equal to 4 --(3)
From equations (1), (2) and (3), we can say that the terms have a common ratio equal to 4 and hence it is a geometric sequence. And the nth term of this sequence is given by \[{{a}_{n}}=3{{(4)}^{n-1}}\].
Note:
While solving questions from a geometric sequence, one common error would be not correctly finding the value of r, the common multiplier. Sometimes sequences of fractions are confusing. You might check that the r calculated is consistently true for any two successive terms of the sequence. This helps to verify the sequence.
The sequence whose terms are obtained by the multiplication of a number to its previous term called common ratio or multiplier. Such a sequence is the geometric sequence. The generalized form of terms of a geometric sequence is \[{{a}_{n}}={{a}_{0}}{{q}^{n-1}}\], this gives the nth term where \[{{a}_{0}}\] is the first term and q is the multiplier.
Complete step by step answer:
In the given question, the sequence is 3, 12, 48, 192, …
Now, let the first term,\[{{a}_{0}}\] = 3. The second term is \[{{a}_{1}}\]=12, third term is \[{{a}_{2}}\] = 48 and the fourth term is \[{{a}_{3}}\] = 192.
Now let us divide the second term with first term then we get
\[\dfrac{{{a}_{1}}}{{{a}_{0}}}\] = \[\dfrac{12}{3}\] which is equal to 4 ---(1)
Now we divide the third term by second term then we get
\[\dfrac{{{a}_{2}}}{{{a}_{1}}}\] = \[\dfrac{48}{12}\] which is also equal to 4 --(2)
Now we divide the fourth term by the third term then we get
\[\dfrac{{{a}_{3}}}{{{a}_{2}}}\] = \[\dfrac{192}{48}\] which is also equal to 4 --(3)
From equations (1), (2) and (3), we can say that the terms have a common ratio equal to 4 and hence it is a geometric sequence. And the nth term of this sequence is given by \[{{a}_{n}}=3{{(4)}^{n-1}}\].
Note:
While solving questions from a geometric sequence, one common error would be not correctly finding the value of r, the common multiplier. Sometimes sequences of fractions are confusing. You might check that the r calculated is consistently true for any two successive terms of the sequence. This helps to verify the sequence.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

