
How do you determine whether the sequence 10, 8, 6, 4, 2,… is arithmetic and if it is, what is the common difference?
Answer
538.2k+ views
Hint: Here in this question, we have a sequence and we have to check whether the sequence belongs to an arithmetic sequence or not. We check the sequence with the help of arithmetic sequence definition and if it is arithmetic sequence we determine the common difference of the sequence
Complete step-by-step solution:
In the sequence we have three kinds of sequence namely, arithmetic sequence, geometric sequence and harmonic sequence. In arithmetic sequence we the common difference between the two terms, In geometric sequence we the common ratio between the two terms, In harmonic sequence it is a ratio of arithmetic sequence to geometric sequence.
The general arithmetic progression is of the form \[a,a + d,a + 2d,...\] where a is first term and nth d is the common difference. The nth term of the arithmetic progression is defined as \[{a_n} = {a_0} + (n - 1)d\]
Now let us consider the sequence which is given in the question 4, 7, 10, 13, 16,… here we have 5 terms. Let us find the difference between these two consecutive numbers.
Here \[{a_1} = 10\], \[{a_2} = 8\], \[{a_3} = 6\], \[{a_4} = 4\], \[{a_5} = 2\]
Let we find
The difference between \[{a_1}\]and \[{a_2}\], so we have
\[{a_2} - {a_1} = 8 - 10 = - 2\]
The difference between \[{a_2}\]and \[{a_3}\], so we have
\[{a_3} - {a_2} = 6 - 8 = - 2\]
The difference between \[{a_3}\]and \[{a_4}\], so we have
\[{a_4} - {a_3} = 4 - 6 = - 2\]
The difference between \[{a_4}\]and \[{a_5}\], so we have
\[{a_5} - {a_4} = 2 - 4 = - 2\]
Hence we have got the same difference for the consecutive numbers.
Therefore the given sequence is an arithmetic sequence
The common difference of the arithmetic sequence 10, 8, 6, 4, 2,… is -2.
Note: By considering the formula of arithmetic sequence we verify the common difference which we obtained. We have to check the common difference for all the terms. Suppose if we check for the first two terms not for other terms then we may go wrong. So definition of arithmetic sequence is important to solve these kinds of problems.
Complete step-by-step solution:
In the sequence we have three kinds of sequence namely, arithmetic sequence, geometric sequence and harmonic sequence. In arithmetic sequence we the common difference between the two terms, In geometric sequence we the common ratio between the two terms, In harmonic sequence it is a ratio of arithmetic sequence to geometric sequence.
The general arithmetic progression is of the form \[a,a + d,a + 2d,...\] where a is first term and nth d is the common difference. The nth term of the arithmetic progression is defined as \[{a_n} = {a_0} + (n - 1)d\]
Now let us consider the sequence which is given in the question 4, 7, 10, 13, 16,… here we have 5 terms. Let us find the difference between these two consecutive numbers.
Here \[{a_1} = 10\], \[{a_2} = 8\], \[{a_3} = 6\], \[{a_4} = 4\], \[{a_5} = 2\]
Let we find
The difference between \[{a_1}\]and \[{a_2}\], so we have
\[{a_2} - {a_1} = 8 - 10 = - 2\]
The difference between \[{a_2}\]and \[{a_3}\], so we have
\[{a_3} - {a_2} = 6 - 8 = - 2\]
The difference between \[{a_3}\]and \[{a_4}\], so we have
\[{a_4} - {a_3} = 4 - 6 = - 2\]
The difference between \[{a_4}\]and \[{a_5}\], so we have
\[{a_5} - {a_4} = 2 - 4 = - 2\]
Hence we have got the same difference for the consecutive numbers.
Therefore the given sequence is an arithmetic sequence
The common difference of the arithmetic sequence 10, 8, 6, 4, 2,… is -2.
Note: By considering the formula of arithmetic sequence we verify the common difference which we obtained. We have to check the common difference for all the terms. Suppose if we check for the first two terms not for other terms then we may go wrong. So definition of arithmetic sequence is important to solve these kinds of problems.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

