
How do you determine if the equation $y = 0.25{\left( {1.03} \right)^5}$ represents exponential growth or decay?
Answer
536.1k+ views
Hint: Given an exponential expression in which we have to identify whether the expression represents growth or decay. First, we will compare the value of the coefficient of the expression whether it is greater than zero. Then, compare the value of the base of exponent whether it is between zero and one or greater than one.
Complete step-by-step solution:
We are given the exponential expression in the form $y = a{\left( b \right)^x}$. Then, compare the value of $a$ with zero by substituting $a = 0.25$
$ \Rightarrow 0.25 > 0$
Now, we will compare the value of $b$ with one by substituting $b = 1.03$
$1.03 > 1$
Here, the value of $a$ is greater than $0$ and $b$ is greater than $1$, which means the function represents the exponential growth.
Hence, the equation $y = 0.25{\left( {1.03} \right)^5}$ represents exponential growth.
Note: In the exponential function, $y = a{\left( b \right)^x}$ if the value of $a$ is greater than $0$, and the value of $b$ is greater than $1$, then the function is known as exponential growth. On the other hand, if the value of $a$ is greater than $0$, but the value of $b$ is less than $0$, then the function is known as exponential decay. The value of $b$ is known as the growth factor or decay factor of the expression.
Complete step-by-step solution:
We are given the exponential expression in the form $y = a{\left( b \right)^x}$. Then, compare the value of $a$ with zero by substituting $a = 0.25$
$ \Rightarrow 0.25 > 0$
Now, we will compare the value of $b$ with one by substituting $b = 1.03$
$1.03 > 1$
Here, the value of $a$ is greater than $0$ and $b$ is greater than $1$, which means the function represents the exponential growth.
Hence, the equation $y = 0.25{\left( {1.03} \right)^5}$ represents exponential growth.
Note: In the exponential function, $y = a{\left( b \right)^x}$ if the value of $a$ is greater than $0$, and the value of $b$ is greater than $1$, then the function is known as exponential growth. On the other hand, if the value of $a$ is greater than $0$, but the value of $b$ is less than $0$, then the function is known as exponential decay. The value of $b$ is known as the growth factor or decay factor of the expression.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

