
Derive de-Broglie’s equation.
Answer
515.8k+ views
Hint: As you know, de-Broglie’s equation is one of the equations used to define the wave properties of matter. It is actually describing the wave nature of the electron.
Complete step by step answer: We know that electromagnetic radiation exhibits the dual nature of a particle and wave. Microscopic particles like electrons also possess this type of dual nature.
Let us derive the de-Broglie equation:
Very low mass particle moving at speed less than that of light behaves like a particle and wave. De-broglie derived an expression relating the mass of such smaller particles and its wavelength.
Plank’s quantum theory relates the energy of an electromagnetic wave to its wavelength or frequency.
${{E = h\nu = }}\dfrac{{{\text{hc}}}}{{{\lambda }}}$ ………..(1)
Einstein related the energy of particle matter to its mass and velocity, as ${\text{E = m}}{{\text{c}}^{\text{2}}}$ ………(2)
As the smaller particle exhibits dual nature, and energy being the same, de-Broglie equated both these relations for the particle moving with velocity ‘V’ as,
${\text{E = }}\dfrac{{{\text{hc}}}}{{{\lambda }}}{\text{ = m}}{{\text{v}}^{\text{2}}}{\text{:Then,}}\dfrac{{\text{h}}}{{{\lambda }}}{\text{ = mv}}$
${{\lambda = }}\dfrac{{\text{h}}}{{{\text{mv}}}}{\text{ = }}\dfrac{{\text{h}}}{{{\text{momentum}}}}$, where ‘h’ is the plank’s constant.
This equation relating the momentum of a particle with its wavelength is the de-Broglie equation and the wavelength calculated using this relation is the de-Broglie wavelength.
Additional Information:
Particle and wave nature of matter, however, looked contradictory as it was not possible to prove the existence of both properties in any single experiment. This is because of the fact that every experiment is normally based on some principle and results related to the principle are only reflected in that experiment and not the other.
Note: You should notice that both the particle nature and the wave nature are necessary to understand or describe the matter completely. Hence, particles and wave nature of matter are actually ‘complementary’ to each other. It is not necessary for both to be present at the same time though. The significance of de-Broglie relation is that it is more useful to microscopic, fundamental particles like electrons.
Complete step by step answer: We know that electromagnetic radiation exhibits the dual nature of a particle and wave. Microscopic particles like electrons also possess this type of dual nature.
Let us derive the de-Broglie equation:
Very low mass particle moving at speed less than that of light behaves like a particle and wave. De-broglie derived an expression relating the mass of such smaller particles and its wavelength.
Plank’s quantum theory relates the energy of an electromagnetic wave to its wavelength or frequency.
${{E = h\nu = }}\dfrac{{{\text{hc}}}}{{{\lambda }}}$ ………..(1)
Einstein related the energy of particle matter to its mass and velocity, as ${\text{E = m}}{{\text{c}}^{\text{2}}}$ ………(2)
As the smaller particle exhibits dual nature, and energy being the same, de-Broglie equated both these relations for the particle moving with velocity ‘V’ as,
${\text{E = }}\dfrac{{{\text{hc}}}}{{{\lambda }}}{\text{ = m}}{{\text{v}}^{\text{2}}}{\text{:Then,}}\dfrac{{\text{h}}}{{{\lambda }}}{\text{ = mv}}$
${{\lambda = }}\dfrac{{\text{h}}}{{{\text{mv}}}}{\text{ = }}\dfrac{{\text{h}}}{{{\text{momentum}}}}$, where ‘h’ is the plank’s constant.
This equation relating the momentum of a particle with its wavelength is the de-Broglie equation and the wavelength calculated using this relation is the de-Broglie wavelength.
Additional Information:
Particle and wave nature of matter, however, looked contradictory as it was not possible to prove the existence of both properties in any single experiment. This is because of the fact that every experiment is normally based on some principle and results related to the principle are only reflected in that experiment and not the other.
Note: You should notice that both the particle nature and the wave nature are necessary to understand or describe the matter completely. Hence, particles and wave nature of matter are actually ‘complementary’ to each other. It is not necessary for both to be present at the same time though. The significance of de-Broglie relation is that it is more useful to microscopic, fundamental particles like electrons.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

