
Derive Boyle’s law using kinetic theory of gases.
Answer
500.4k+ views
5 likes
Hint: Use the expression for pressure in kinetic theory of gases to derive Boyle’s law at a constant temperature.
Complete step by step solution:
The pressure exerted by a gas according to kinetic theory of gases is,
is the density and is the root mean square velocity of the gas molecules
Where M is mass, is volume and is the kinetic energy of the gas.
At a constant temperature, the velocity will be constant and hence the kinetic energy will be constant.
constant
Thus, at a constant temperature the pressure of a gas is inversely proportional to the volume occupied by it. This is Boyle’s law.
Additional information: The kinetic theory of gases assumes that a gas is made up of a large number of identical particles (atoms or molecules) which are in rapid random thermal motion. They undergo elastic collisions between themselves and with the walls of the container in which they are enclosed. The size of the constituent atom or molecule is assumed to be much smaller than the mean distance between them. All other types of interactions are neglected. Although this theory is useful in explaining properties such as viscosity, thermal conductivity, mass diffusivity and various macroscopic properties of gases it has several drawbacks. The assumption that intermolecular forces and volume of the particles is negligible is not always valid. It cannot be used to determine properties of condensed states of matter.
Note: Boyle’s law along with Charles’s law, Gay-Lussac’s law and Avogadro’s hypothesis gives the ideal gas law.
Complete step by step solution:
The pressure exerted by a gas according to kinetic theory of gases is,
Where M is mass,
At a constant temperature, the velocity will be constant and hence the kinetic energy will be constant.
Thus, at a constant temperature the pressure of a gas is inversely proportional to the volume occupied by it. This is Boyle’s law.
Additional information: The kinetic theory of gases assumes that a gas is made up of a large number of identical particles (atoms or molecules) which are in rapid random thermal motion. They undergo elastic collisions between themselves and with the walls of the container in which they are enclosed. The size of the constituent atom or molecule is assumed to be much smaller than the mean distance between them. All other types of interactions are neglected. Although this theory is useful in explaining properties such as viscosity, thermal conductivity, mass diffusivity and various macroscopic properties of gases it has several drawbacks. The assumption that intermolecular forces and volume of the particles is negligible is not always valid. It cannot be used to determine properties of condensed states of matter.
Note: Boyle’s law along with Charles’s law, Gay-Lussac’s law and Avogadro’s hypothesis gives the ideal gas law.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Who built the Grand Trunk Road AChandragupta Maurya class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light
