
Define many-one function. Give an example of many-one functions.
Answer
527.4k+ views
Hint: As we know that a function $f:X \to Y$ that is from variable $X$ to variable $Y$ is said to be one-one functions if there exist only one element from domain connected with only one and unique element from co-domain. Similarly ,we can say that a function$f:X \to Y$ that is from variable $X$ to variable $Y$ is said to be many-one functions if there exist two or more elements from the domain connected with the same element from the co-domain.
With the help of this definition, we can give an example, consider elements of $X$ be $\{ 1,2\} $ and elements of $Y$ be $\{ x\} $ and $f:X \to Y$ such that $f = \{ (1,x),(2,x)\} $ . here element one and two both connected with the same element that is $x$ . This is how a function can have many-one relationships.
Complete step-by-step answer:
Many-one function is defined as , A function$f:X \to Y$ that is from variable $X$ to variable $Y$ is said to be many-one functions if there exist two or more elements from a domain connected with the same element from the co-domain .
Let us consider an example ,
Let the domain or elements of $X$ be $\{ 1,2.3,4,5,6\} $ ,
Let the co-domain or elements of $Y$ be $\{ x,y,z\} $ and
$f:X \to Y$
Such that $f = \{ (1,x),(2,x),(3,x),(4,y),(5,z)\} $
Here elements one , two and three all are connected with the same element that is $x$ , and the elements four and five are connected with the same element that is $y$. This is how a function can have many-one relationships.
Note: Range is defined as the set of elements from $y$ that actually come out whereas the co-domain of a function is given by the set of values that can possibly become a range of the function. In this particular question the range of the function is equal to the co-domain of the function.
With the help of this definition, we can give an example, consider elements of $X$ be $\{ 1,2\} $ and elements of $Y$ be $\{ x\} $ and $f:X \to Y$ such that $f = \{ (1,x),(2,x)\} $ . here element one and two both connected with the same element that is $x$ . This is how a function can have many-one relationships.
Complete step-by-step answer:
Many-one function is defined as , A function$f:X \to Y$ that is from variable $X$ to variable $Y$ is said to be many-one functions if there exist two or more elements from a domain connected with the same element from the co-domain .
Let us consider an example ,
Let the domain or elements of $X$ be $\{ 1,2.3,4,5,6\} $ ,
Let the co-domain or elements of $Y$ be $\{ x,y,z\} $ and
$f:X \to Y$
Such that $f = \{ (1,x),(2,x),(3,x),(4,y),(5,z)\} $
Here elements one , two and three all are connected with the same element that is $x$ , and the elements four and five are connected with the same element that is $y$. This is how a function can have many-one relationships.
Note: Range is defined as the set of elements from $y$ that actually come out whereas the co-domain of a function is given by the set of values that can possibly become a range of the function. In this particular question the range of the function is equal to the co-domain of the function.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

