
Define many-one function. Give an example of many-one functions.
Answer
529.2k+ views
Hint: As we know that a function $f:X \to Y$ that is from variable $X$ to variable $Y$ is said to be one-one functions if there exist only one element from domain connected with only one and unique element from co-domain. Similarly ,we can say that a function$f:X \to Y$ that is from variable $X$ to variable $Y$ is said to be many-one functions if there exist two or more elements from the domain connected with the same element from the co-domain.
With the help of this definition, we can give an example, consider elements of $X$ be $\{ 1,2\} $ and elements of $Y$ be $\{ x\} $ and $f:X \to Y$ such that $f = \{ (1,x),(2,x)\} $ . here element one and two both connected with the same element that is $x$ . This is how a function can have many-one relationships.
Complete step-by-step answer:
Many-one function is defined as , A function$f:X \to Y$ that is from variable $X$ to variable $Y$ is said to be many-one functions if there exist two or more elements from a domain connected with the same element from the co-domain .
Let us consider an example ,
Let the domain or elements of $X$ be $\{ 1,2.3,4,5,6\} $ ,
Let the co-domain or elements of $Y$ be $\{ x,y,z\} $ and
$f:X \to Y$
Such that $f = \{ (1,x),(2,x),(3,x),(4,y),(5,z)\} $
Here elements one , two and three all are connected with the same element that is $x$ , and the elements four and five are connected with the same element that is $y$. This is how a function can have many-one relationships.
Note: Range is defined as the set of elements from $y$ that actually come out whereas the co-domain of a function is given by the set of values that can possibly become a range of the function. In this particular question the range of the function is equal to the co-domain of the function.
With the help of this definition, we can give an example, consider elements of $X$ be $\{ 1,2\} $ and elements of $Y$ be $\{ x\} $ and $f:X \to Y$ such that $f = \{ (1,x),(2,x)\} $ . here element one and two both connected with the same element that is $x$ . This is how a function can have many-one relationships.
Complete step-by-step answer:
Many-one function is defined as , A function$f:X \to Y$ that is from variable $X$ to variable $Y$ is said to be many-one functions if there exist two or more elements from a domain connected with the same element from the co-domain .
Let us consider an example ,
Let the domain or elements of $X$ be $\{ 1,2.3,4,5,6\} $ ,
Let the co-domain or elements of $Y$ be $\{ x,y,z\} $ and
$f:X \to Y$
Such that $f = \{ (1,x),(2,x),(3,x),(4,y),(5,z)\} $
Here elements one , two and three all are connected with the same element that is $x$ , and the elements four and five are connected with the same element that is $y$. This is how a function can have many-one relationships.
Note: Range is defined as the set of elements from $y$ that actually come out whereas the co-domain of a function is given by the set of values that can possibly become a range of the function. In this particular question the range of the function is equal to the co-domain of the function.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
The camels hump is made of which tissues a Skeletal class 11 biology CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Define cubit handspan armlength and footspan class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

The percentage of free SO3 in oleum sample which is class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

