
How do you create a 16 point unit circle that ranges from 0 to 8pi?
Answer
551.4k+ views
Hint: Create the circle of range $\left( 0,2\pi \right)$ instead of $\left( 0,8\pi \right)$ as both are same in case of a circle and $2\pi $is the minimum range for a circle. Plot 16 points by choosing 16 different angles. Choose the angles in such a way that their sine and cosine values are known.
Complete step by step answer:
A circle that ranges from 0 to $8\pi $, is the same as the circle ranges from 0 to $2\pi $because each rotation from one quadrant to another around the coordinate axes is $\dfrac{\pi }{2}$. For a complete circle it will be a complete rotation around 4 quadrants. Hence range will be $\dfrac{\pi }{2}\times 4=2\pi $.
So, to create a circle that ranges from 0 to $8\pi $, we have to create a circle ranging from 0 to $2\pi $.
Now for 16 points we have to consider 16 different angles.
The sine and cosine values of the angles can be taken from the given table
For other angles we just have to change the sign as per the quadrant.
So, the points are
$\begin{align}
& \left( \cos {{0}^{\circ }},\sin {{0}^{\circ }} \right)=\left( 1,0 \right) \\
& \left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{45}^{\circ }},\sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)=\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{90}^{\circ }},\sin {{90}^{\circ }} \right)=\left( 0,1 \right) \\
& \left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)=\left( -\dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{135}^{\circ }},\sin {{135}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{150}^{\circ }},\sin {{150}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{180}^{\circ }},\sin {{180}^{\circ }} \right)=\left( -1,0 \right) \\
& \left( \cos {{210}^{\circ }},\sin {{210}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{225}^{\circ }},\sin {{225}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)=\left( -\dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{270}^{\circ }},\sin {{270}^{\circ }} \right)=\left( 0,-1 \right) \\
& \left( \cos {{300}^{\circ }},\sin {{300}^{\circ }} \right)=\left( \dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{315}^{\circ }},\sin {{315}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{330}^{\circ }},\sin {{330}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{360}^{\circ }},\sin {{360}^{\circ }} \right)=\left( 1,0 \right) \\
\end{align}$
Note:
The angels should be chosen in such a way that their sine and cosine values are known or can be obtained easily. The 16 equal angle difference i.e. $\dfrac{{{360}^{\circ }}}{16}={{22.5}^{\circ }}$should be avoided because there will be complexity in calculation. For sine and cosine values of angles more than ${{90}^{\circ }}$, ASTC rule can be used.
Complete step by step answer:
A circle that ranges from 0 to $8\pi $, is the same as the circle ranges from 0 to $2\pi $because each rotation from one quadrant to another around the coordinate axes is $\dfrac{\pi }{2}$. For a complete circle it will be a complete rotation around 4 quadrants. Hence range will be $\dfrac{\pi }{2}\times 4=2\pi $.
So, to create a circle that ranges from 0 to $8\pi $, we have to create a circle ranging from 0 to $2\pi $.
Now for 16 points we have to consider 16 different angles.
The sine and cosine values of the angles can be taken from the given table
| angle | Cosine value | Sine value |
| ${{0}^{\circ }}$ | 0 | 1 |
| ${{30}^{\circ }}$ | $\dfrac{\sqrt{3}}{2}$ | $\dfrac{1}{2}$ |
| ${{45}^{\circ }}$ | $\dfrac{1}{\sqrt{2}}$ | $\dfrac{1}{\sqrt{2}}$ |
| ${{60}^{\circ }}$ | $\dfrac{1}{2}$ | $\dfrac{\sqrt{3}}{2}$ |
| ${{90}^{\circ }}$ | 1 | 0 |
For other angles we just have to change the sign as per the quadrant.
So, the points are
$\begin{align}
& \left( \cos {{0}^{\circ }},\sin {{0}^{\circ }} \right)=\left( 1,0 \right) \\
& \left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{45}^{\circ }},\sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)=\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{90}^{\circ }},\sin {{90}^{\circ }} \right)=\left( 0,1 \right) \\
& \left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)=\left( -\dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{135}^{\circ }},\sin {{135}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{150}^{\circ }},\sin {{150}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{180}^{\circ }},\sin {{180}^{\circ }} \right)=\left( -1,0 \right) \\
& \left( \cos {{210}^{\circ }},\sin {{210}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{225}^{\circ }},\sin {{225}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)=\left( -\dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{270}^{\circ }},\sin {{270}^{\circ }} \right)=\left( 0,-1 \right) \\
& \left( \cos {{300}^{\circ }},\sin {{300}^{\circ }} \right)=\left( \dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{315}^{\circ }},\sin {{315}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{330}^{\circ }},\sin {{330}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{360}^{\circ }},\sin {{360}^{\circ }} \right)=\left( 1,0 \right) \\
\end{align}$
Note:
The angels should be chosen in such a way that their sine and cosine values are known or can be obtained easily. The 16 equal angle difference i.e. $\dfrac{{{360}^{\circ }}}{16}={{22.5}^{\circ }}$should be avoided because there will be complexity in calculation. For sine and cosine values of angles more than ${{90}^{\circ }}$, ASTC rule can be used.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

