
${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$
Answer
577.2k+ views
Hint: Note that, \[{\text{since }}\dfrac{{5\pi }}{6}{\text{ is in second quadrant, therefore }}\operatorname{cosec} \dfrac{{5\pi }}{6}{\text{ is positive}}{\text{.}}\]
Then in the left hand side, substitute the values of \[\cot \dfrac{\pi }{6}\], \[\operatorname{cosec} \dfrac{{5\pi }}{6}\] and \[\tan \dfrac{\pi }{6}\].
On solving them we will reach our required solution.
Complete step-by-step answer:
Given that, to prove ${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$
Left hand side:
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6}$
The above expression can be written as,
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\left( {\pi - \dfrac{\pi }{6}} \right) + 3{\tan ^2}\dfrac{\pi }{6}$
Since $\dfrac{{5\pi }}{6}$is in the second quadrant, therefore $\operatorname{cosec} \dfrac{{5\pi }}{6}$ is positive,
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{\pi }{6} + 3{\tan ^2}\dfrac{\pi }{6}$
Using, \[\cot \dfrac{\pi }{6} = \sqrt 3 ,\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }},\cos ec\dfrac{\pi }{6} = 2\], we get,
$ = {\left( {\sqrt 3 } \right)^2} + 2 + 3 \times {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2}$
On squaring we get,
$ = 3 + 2 + \left( {3 \times \dfrac{1}{3}} \right)$
On further simplification we get,
$ = 3 + 2 + 1$
$ = 6$
= Right hand side
Hence, ${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$ (proved).
Note:
Note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Also, the trigonometric ratios of the standard angles are given by
Then in the left hand side, substitute the values of \[\cot \dfrac{\pi }{6}\], \[\operatorname{cosec} \dfrac{{5\pi }}{6}\] and \[\tan \dfrac{\pi }{6}\].
On solving them we will reach our required solution.
Complete step-by-step answer:
Given that, to prove ${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$
Left hand side:
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6}$
The above expression can be written as,
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\left( {\pi - \dfrac{\pi }{6}} \right) + 3{\tan ^2}\dfrac{\pi }{6}$
Since $\dfrac{{5\pi }}{6}$is in the second quadrant, therefore $\operatorname{cosec} \dfrac{{5\pi }}{6}$ is positive,
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{\pi }{6} + 3{\tan ^2}\dfrac{\pi }{6}$
Using, \[\cot \dfrac{\pi }{6} = \sqrt 3 ,\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }},\cos ec\dfrac{\pi }{6} = 2\], we get,
$ = {\left( {\sqrt 3 } \right)^2} + 2 + 3 \times {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2}$
On squaring we get,
$ = 3 + 2 + \left( {3 \times \dfrac{1}{3}} \right)$
On further simplification we get,
$ = 3 + 2 + 1$
$ = 6$
= Right hand side
Hence, ${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$ (proved).
Note:
Note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Also, the trigonometric ratios of the standard angles are given by
| \[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
| \[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| \[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| \[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
| \[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
| \[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| \[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

