
${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$
Answer
511.8k+ views
Hint: Note that, \[{\text{since }}\dfrac{{5\pi }}{6}{\text{ is in second quadrant, therefore }}\operatorname{cosec} \dfrac{{5\pi }}{6}{\text{ is positive}}{\text{.}}\]
Then in the left hand side, substitute the values of \[\cot \dfrac{\pi }{6}\], \[\operatorname{cosec} \dfrac{{5\pi }}{6}\] and \[\tan \dfrac{\pi }{6}\].
On solving them we will reach our required solution.
Complete step-by-step answer:
Given that, to prove ${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$
Left hand side:
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6}$
The above expression can be written as,
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\left( {\pi - \dfrac{\pi }{6}} \right) + 3{\tan ^2}\dfrac{\pi }{6}$
Since $\dfrac{{5\pi }}{6}$is in the second quadrant, therefore $\operatorname{cosec} \dfrac{{5\pi }}{6}$ is positive,
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{\pi }{6} + 3{\tan ^2}\dfrac{\pi }{6}$
Using, \[\cot \dfrac{\pi }{6} = \sqrt 3 ,\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }},\cos ec\dfrac{\pi }{6} = 2\], we get,
$ = {\left( {\sqrt 3 } \right)^2} + 2 + 3 \times {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2}$
On squaring we get,
$ = 3 + 2 + \left( {3 \times \dfrac{1}{3}} \right)$
On further simplification we get,
$ = 3 + 2 + 1$
$ = 6$
= Right hand side
Hence, ${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$ (proved).
Note:
Note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Also, the trigonometric ratios of the standard angles are given by
Then in the left hand side, substitute the values of \[\cot \dfrac{\pi }{6}\], \[\operatorname{cosec} \dfrac{{5\pi }}{6}\] and \[\tan \dfrac{\pi }{6}\].
On solving them we will reach our required solution.
Complete step-by-step answer:
Given that, to prove ${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$
Left hand side:
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6}$
The above expression can be written as,
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\left( {\pi - \dfrac{\pi }{6}} \right) + 3{\tan ^2}\dfrac{\pi }{6}$
Since $\dfrac{{5\pi }}{6}$is in the second quadrant, therefore $\operatorname{cosec} \dfrac{{5\pi }}{6}$ is positive,
$ = {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{\pi }{6} + 3{\tan ^2}\dfrac{\pi }{6}$
Using, \[\cot \dfrac{\pi }{6} = \sqrt 3 ,\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }},\cos ec\dfrac{\pi }{6} = 2\], we get,
$ = {\left( {\sqrt 3 } \right)^2} + 2 + 3 \times {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2}$
On squaring we get,
$ = 3 + 2 + \left( {3 \times \dfrac{1}{3}} \right)$
On further simplification we get,
$ = 3 + 2 + 1$
$ = 6$
= Right hand side
Hence, ${\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6$ (proved).
Note:
Note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:

$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Also, the trigonometric ratios of the standard angles are given by
\[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
\[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
\[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
\[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
\[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
\[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
\[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
