
What is cos $ 80{}^\circ $ + cos $ 40{}^\circ $ − cos $ 20{}^\circ $ equal to?
A. 2
B. 1
C. 0
D. −19
Answer
564.6k+ views
Hint:Use the sum to product identity cos 2A + cos 2B = 2 cos (A + B) cos (A − B) to arrive at an expression which has angles whose trigonometric ratios we know, or they have the same angles. Here, $ 80{}^\circ $ =
2 × $ 40{}^\circ $ and $ 40{}^\circ $ = 2 × $ 20{}^\circ $ , and $ 40{}^\circ $ + $ 20{}^\circ $ = $ 60{}^\circ
$ and $ 40{}^\circ $ − $ 20{}^\circ $ = $ 20{}^\circ $ . Convert all the terms into trigonometric ratios of 20˚ and simplify.
Recall that cos $ 60{}^\circ $ = $ \dfrac{1}{2} $ .
Complete step by step solution:
The given expression is cos $ 80{}^\circ $ + cos $ 40{}^\circ $ − cos $ 20{}^\circ $ .
It can be written as:
= cos (2 × $ 40{}^\circ $ ) + cos (2 × $ 20{}^\circ $ ) − cos $ 20{}^\circ $
Using cos 2A + cos 2B = 2 cos (A + B) cos (A − B), we can write it as:
= 2 cos ( $ 40{}^\circ $ + $ 20{}^\circ $ ) cos ( $ 40{}^\circ $ − $ 20{}^\circ $ ) − cos $ 20{}^\circ $
= 2 cos $ 60{}^\circ $ cos $ 20{}^\circ $ − cos $ 20{}^\circ $
Substituting the value of cos $ 60{}^\circ $ = $ \dfrac{1}{2} $ , we get:
= $ 2\left( \dfrac{1}{2} \right) $ cos $ 20{}^\circ $ − cos $ 20{}^\circ $
= cos $ 20{}^\circ $ − cos $ 20{}^\circ $
= 0
Hence, the correct answer is C.
Note: All the trigonometric ratios are positive in the interval 0 < θ < $ 90{}^\circ $ .
Useful trigonometric identities:
$ {{\sin }^{2}}\theta $ + $ {{\cos }^{2}}\theta $ = 1
Sum-Product formula:
sin 2A + sin 2B = 2 sin (A + B) cos (A − B)
sin 2A − sin 2B = 2 cos (A + B) sin (A − B)
cos 2A + cos 2B = 2 cos (A + B) cos (A − B)
cos 2A + cos 2B = −2 sin (A + B) sin (A − B)
2 × $ 40{}^\circ $ and $ 40{}^\circ $ = 2 × $ 20{}^\circ $ , and $ 40{}^\circ $ + $ 20{}^\circ $ = $ 60{}^\circ
$ and $ 40{}^\circ $ − $ 20{}^\circ $ = $ 20{}^\circ $ . Convert all the terms into trigonometric ratios of 20˚ and simplify.
Recall that cos $ 60{}^\circ $ = $ \dfrac{1}{2} $ .
Complete step by step solution:
The given expression is cos $ 80{}^\circ $ + cos $ 40{}^\circ $ − cos $ 20{}^\circ $ .
It can be written as:
= cos (2 × $ 40{}^\circ $ ) + cos (2 × $ 20{}^\circ $ ) − cos $ 20{}^\circ $
Using cos 2A + cos 2B = 2 cos (A + B) cos (A − B), we can write it as:
= 2 cos ( $ 40{}^\circ $ + $ 20{}^\circ $ ) cos ( $ 40{}^\circ $ − $ 20{}^\circ $ ) − cos $ 20{}^\circ $
= 2 cos $ 60{}^\circ $ cos $ 20{}^\circ $ − cos $ 20{}^\circ $
Substituting the value of cos $ 60{}^\circ $ = $ \dfrac{1}{2} $ , we get:
= $ 2\left( \dfrac{1}{2} \right) $ cos $ 20{}^\circ $ − cos $ 20{}^\circ $
= cos $ 20{}^\circ $ − cos $ 20{}^\circ $
= 0
Hence, the correct answer is C.
Note: All the trigonometric ratios are positive in the interval 0 < θ < $ 90{}^\circ $ .
Useful trigonometric identities:
$ {{\sin }^{2}}\theta $ + $ {{\cos }^{2}}\theta $ = 1
Sum-Product formula:
sin 2A + sin 2B = 2 sin (A + B) cos (A − B)
sin 2A − sin 2B = 2 cos (A + B) sin (A − B)
cos 2A + cos 2B = 2 cos (A + B) cos (A − B)
cos 2A + cos 2B = −2 sin (A + B) sin (A − B)
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

