
What is cos $ 80{}^\circ $ + cos $ 40{}^\circ $ − cos $ 20{}^\circ $ equal to?
A. 2
B. 1
C. 0
D. −19
Answer
550.5k+ views
Hint:Use the sum to product identity cos 2A + cos 2B = 2 cos (A + B) cos (A − B) to arrive at an expression which has angles whose trigonometric ratios we know, or they have the same angles. Here, $ 80{}^\circ $ =
2 × $ 40{}^\circ $ and $ 40{}^\circ $ = 2 × $ 20{}^\circ $ , and $ 40{}^\circ $ + $ 20{}^\circ $ = $ 60{}^\circ
$ and $ 40{}^\circ $ − $ 20{}^\circ $ = $ 20{}^\circ $ . Convert all the terms into trigonometric ratios of 20˚ and simplify.
Recall that cos $ 60{}^\circ $ = $ \dfrac{1}{2} $ .
Complete step by step solution:
The given expression is cos $ 80{}^\circ $ + cos $ 40{}^\circ $ − cos $ 20{}^\circ $ .
It can be written as:
= cos (2 × $ 40{}^\circ $ ) + cos (2 × $ 20{}^\circ $ ) − cos $ 20{}^\circ $
Using cos 2A + cos 2B = 2 cos (A + B) cos (A − B), we can write it as:
= 2 cos ( $ 40{}^\circ $ + $ 20{}^\circ $ ) cos ( $ 40{}^\circ $ − $ 20{}^\circ $ ) − cos $ 20{}^\circ $
= 2 cos $ 60{}^\circ $ cos $ 20{}^\circ $ − cos $ 20{}^\circ $
Substituting the value of cos $ 60{}^\circ $ = $ \dfrac{1}{2} $ , we get:
= $ 2\left( \dfrac{1}{2} \right) $ cos $ 20{}^\circ $ − cos $ 20{}^\circ $
= cos $ 20{}^\circ $ − cos $ 20{}^\circ $
= 0
Hence, the correct answer is C.
Note: All the trigonometric ratios are positive in the interval 0 < θ < $ 90{}^\circ $ .
Useful trigonometric identities:
$ {{\sin }^{2}}\theta $ + $ {{\cos }^{2}}\theta $ = 1
Sum-Product formula:
sin 2A + sin 2B = 2 sin (A + B) cos (A − B)
sin 2A − sin 2B = 2 cos (A + B) sin (A − B)
cos 2A + cos 2B = 2 cos (A + B) cos (A − B)
cos 2A + cos 2B = −2 sin (A + B) sin (A − B)
2 × $ 40{}^\circ $ and $ 40{}^\circ $ = 2 × $ 20{}^\circ $ , and $ 40{}^\circ $ + $ 20{}^\circ $ = $ 60{}^\circ
$ and $ 40{}^\circ $ − $ 20{}^\circ $ = $ 20{}^\circ $ . Convert all the terms into trigonometric ratios of 20˚ and simplify.
Recall that cos $ 60{}^\circ $ = $ \dfrac{1}{2} $ .
Complete step by step solution:
The given expression is cos $ 80{}^\circ $ + cos $ 40{}^\circ $ − cos $ 20{}^\circ $ .
It can be written as:
= cos (2 × $ 40{}^\circ $ ) + cos (2 × $ 20{}^\circ $ ) − cos $ 20{}^\circ $
Using cos 2A + cos 2B = 2 cos (A + B) cos (A − B), we can write it as:
= 2 cos ( $ 40{}^\circ $ + $ 20{}^\circ $ ) cos ( $ 40{}^\circ $ − $ 20{}^\circ $ ) − cos $ 20{}^\circ $
= 2 cos $ 60{}^\circ $ cos $ 20{}^\circ $ − cos $ 20{}^\circ $
Substituting the value of cos $ 60{}^\circ $ = $ \dfrac{1}{2} $ , we get:
= $ 2\left( \dfrac{1}{2} \right) $ cos $ 20{}^\circ $ − cos $ 20{}^\circ $
= cos $ 20{}^\circ $ − cos $ 20{}^\circ $
= 0
Hence, the correct answer is C.
Note: All the trigonometric ratios are positive in the interval 0 < θ < $ 90{}^\circ $ .
Useful trigonometric identities:
$ {{\sin }^{2}}\theta $ + $ {{\cos }^{2}}\theta $ = 1
Sum-Product formula:
sin 2A + sin 2B = 2 sin (A + B) cos (A − B)
sin 2A − sin 2B = 2 cos (A + B) sin (A − B)
cos 2A + cos 2B = 2 cos (A + B) cos (A − B)
cos 2A + cos 2B = −2 sin (A + B) sin (A − B)
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

