
What is the correct dipole moment of $N{{H}_{3}}$ and $N{{F}_{3}}$ respectively?
(A)- $4.90\times {{10}^{-30}}$ C m and $0.80\times {{10}^{-30}}$ C m
(B)- $0.80\times {{10}^{-30}}$ C m and $4.90\times {{10}^{-30}}$ C m
(C)- $4.90\times {{10}^{-30}}$ C m and $4.90\times {{10}^{-30}}$ C m
(D)- $0.80\times {{10}^{-30}}$ C m and $0.80\times {{10}^{-30}}$ C m
Answer
583.2k+ views
Hint: Dipole moment is a measure of polarity of a bond. It is the product of the charges and the distance between partial charges. It is a vector quantity and its direction is always given from less electronegative atom to more electronegative atom.
It is generally expressed in debye (D) and 1 D = $3.33564\times {{10}^{-30}}$ C m.
Dipole moment of polar molecules containing lone pairs is the vector sum of dipole of lone pair and net dipole moments of bonds.
Complete answer:
Both $N{{H}_{3}}$ and $N{{F}_{3}}$ have trigonal pyramidal shape.
The dipole moment of lone pairs in $N{{H}_{3}}$ and $N{{F}_{3}}$ is away from nitrogen.
Dipole moment of $N{{H}_{3}}$
We know that nitrogen is more electronegative than hydrogen. Therefore, the dipole moment of $N-H$bond will be form H to N. The net dipole moment of three $N-H$ bond will add up to 1.4 D. As we know that 1 D = $3.33564\times {{10}^{-34}}$ C m.
Then, 1.4 D will be equal to $1.4\times 3.33564\times {{10}^{-30}}$ C m, i.e. $4.90\times {{10}^{-30}}$ C m.
Dipole moment of $N{{F}_{3}}$
Electronegativity of F is more than that of N, thus the direction of dipole moment of $N-F$ bond will be from F to N. As we can see that the direction of $N-F$ bond is opposite to that of the lone pair on N atoms. So, the net dipole moment of $N{{F}_{3}}$ has been found to be 0.24 D.
Multiplying 0.24 D with $3.33564\times {{10}^{-30}}$ C m, we get the dipole moment of $0.80\times {{10}^{-30}}$C m.
So, the correct answer is “Option A”.
Note: The dipole moment of lone pairs in $N{{H}_{3}}$ and $N{{F}_{3}}$ is away from nitrogen.
Dipole moment of $N{{H}_{3}}$
We know that nitrogen is more electronegative than hydrogen. Therefore, the dipole moment of $N-H$bond will be form H to N. The net dipole moment of three $N-H$ bond will add up to 1.4 D. As we know that 1 D = $3.33564\times {{10}^{-34}}$ C m.
Then, 1.4 D will be equal to $1.4\times 3.33564\times {{10}^{-30}}$ C m, i.e. $4.90\times {{10}^{-30}}$ C m.
Dipole moment of $N{{F}_{3}}$
Electronegativity of F is more than that of N, thus the direction of dipole moment of $N-F$ bond will be from F to N. As we can see that the direction of $N-F$ bond is opposite to that of the lone pair on N atoms. So, the net dipole moment of $N{{F}_{3}}$ has been found to be 0.24 D.
Multiplying 0.24 D with $3.33564\times {{10}^{-30}}$ C m, we get the dipole moment of $0.80\times {{10}^{-30}}$C m.
It is generally expressed in debye (D) and 1 D = $3.33564\times {{10}^{-30}}$ C m.
Dipole moment of polar molecules containing lone pairs is the vector sum of dipole of lone pair and net dipole moments of bonds.
Complete answer:
Both $N{{H}_{3}}$ and $N{{F}_{3}}$ have trigonal pyramidal shape.
The dipole moment of lone pairs in $N{{H}_{3}}$ and $N{{F}_{3}}$ is away from nitrogen.
Dipole moment of $N{{H}_{3}}$
We know that nitrogen is more electronegative than hydrogen. Therefore, the dipole moment of $N-H$bond will be form H to N. The net dipole moment of three $N-H$ bond will add up to 1.4 D. As we know that 1 D = $3.33564\times {{10}^{-34}}$ C m.
Then, 1.4 D will be equal to $1.4\times 3.33564\times {{10}^{-30}}$ C m, i.e. $4.90\times {{10}^{-30}}$ C m.
Dipole moment of $N{{F}_{3}}$
Electronegativity of F is more than that of N, thus the direction of dipole moment of $N-F$ bond will be from F to N. As we can see that the direction of $N-F$ bond is opposite to that of the lone pair on N atoms. So, the net dipole moment of $N{{F}_{3}}$ has been found to be 0.24 D.
Multiplying 0.24 D with $3.33564\times {{10}^{-30}}$ C m, we get the dipole moment of $0.80\times {{10}^{-30}}$C m.
So, the correct answer is “Option A”.
Note: The dipole moment of lone pairs in $N{{H}_{3}}$ and $N{{F}_{3}}$ is away from nitrogen.
Dipole moment of $N{{H}_{3}}$
We know that nitrogen is more electronegative than hydrogen. Therefore, the dipole moment of $N-H$bond will be form H to N. The net dipole moment of three $N-H$ bond will add up to 1.4 D. As we know that 1 D = $3.33564\times {{10}^{-34}}$ C m.
Then, 1.4 D will be equal to $1.4\times 3.33564\times {{10}^{-30}}$ C m, i.e. $4.90\times {{10}^{-30}}$ C m.
Dipole moment of $N{{F}_{3}}$
Electronegativity of F is more than that of N, thus the direction of dipole moment of $N-F$ bond will be from F to N. As we can see that the direction of $N-F$ bond is opposite to that of the lone pair on N atoms. So, the net dipole moment of $N{{F}_{3}}$ has been found to be 0.24 D.
Multiplying 0.24 D with $3.33564\times {{10}^{-30}}$ C m, we get the dipole moment of $0.80\times {{10}^{-30}}$C m.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Why is steel more elastic than rubber class 11 physics CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

