
How do you convert $4.\overline{4}$ to a fraction?
Answer
535.8k+ views
Hint: We first describe the concept of representation of non-terminating recurring decimal. We describe the process of converting them from decimal to fractions. Following those steps, we convert $4.\overline{4}$ to a fraction. To understand the process better we also take an example of another complicated form and change that decimal into fraction.
Complete step-by-step answer:
The given decimal number is a representation of non-terminating recurring decimals. These types of decimal numbers are rational numbers. They can be expressed in the form of $\dfrac{p}{q}$.
The expansion of the given decimal is $4.\overline{4}=4.44444........$
The process of converting into fraction form is below mentioned.
Step: 1
We have to find the numerator part of the fraction where we take the difference between the whole number without decimal point and the non-recurring part of the number without decimal point.
Step: 2
We have to find the denominator part of the fraction where we take the digits of 9 and 0. The number of digits of 9 is equal to the number of recurring digits in the given number after decimal and the number of digits of 0 is equal to the number of non-recurring digits in the given number after decimal. The 9s come first and the zeroes come after that.
Now we find the fraction form of $4.\overline{4}$ applying the rules.
$4.\overline{4}=\dfrac{44-4}{9}=\dfrac{40}{9}$.
The fractional value of $4.\overline{4}$ is $\dfrac{40}{9}$.
Note: To understand the process better we take another example of $2.45\overline{74}$.
The fractional form of the decimal form will be $2.45\overline{74}=\dfrac{24574-245}{9900}=\dfrac{24329}{9900}$.
There are two recurring and two non-recurring digits in that number after decimal. That’s why we used two 9s and two 0s in the denominator.
Complete step-by-step answer:
The given decimal number is a representation of non-terminating recurring decimals. These types of decimal numbers are rational numbers. They can be expressed in the form of $\dfrac{p}{q}$.
The expansion of the given decimal is $4.\overline{4}=4.44444........$
The process of converting into fraction form is below mentioned.
Step: 1
We have to find the numerator part of the fraction where we take the difference between the whole number without decimal point and the non-recurring part of the number without decimal point.
Step: 2
We have to find the denominator part of the fraction where we take the digits of 9 and 0. The number of digits of 9 is equal to the number of recurring digits in the given number after decimal and the number of digits of 0 is equal to the number of non-recurring digits in the given number after decimal. The 9s come first and the zeroes come after that.
Now we find the fraction form of $4.\overline{4}$ applying the rules.
$4.\overline{4}=\dfrac{44-4}{9}=\dfrac{40}{9}$.
The fractional value of $4.\overline{4}$ is $\dfrac{40}{9}$.
Note: To understand the process better we take another example of $2.45\overline{74}$.
The fractional form of the decimal form will be $2.45\overline{74}=\dfrac{24574-245}{9900}=\dfrac{24329}{9900}$.
There are two recurring and two non-recurring digits in that number after decimal. That’s why we used two 9s and two 0s in the denominator.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
How many millions make a billion class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the capital city of Australia? A) Sydney B) Melbourne C) Brisbane D) Canberra

What is meant by the term Universal Adult Franchis class 6 social science CBSE

Swami Dayananda had translated the into Hindi A Rig class 6 social science CBSE

Why is the Earth called a unique planet class 6 social science CBSE


