
Construct an equilateral triangle, given its side and justify the construction.
Answer
604.2k+ views
Hint: - Here we go through by assuming some length of side of the equilateral triangle. Then for construction of equilateral triangles we use the same length measure by compass for forming the arc. And then join the points where the arc intersects.
Complete step-by-step answer:
Now for constructing the equilateral triangle we first assume the length of the sides of the equilateral triangle.
Let us assume that the side of the equilateral triangle is 5cm.
And now for constructing the triangle the steps of constructions are:-
1) Draw a line segment AB of length 5cm.
2) Taking 5cm as radius, and A as center, draw an arc.
3) Taking 5cm as radius, and B as center, draw another arc such that it cuts another arc.
4) Let C be the point where the two arcs intersect.
5) Join AC and BC and label the sides.
By doing these steps we can see that a triangle ABC is formed.
For justification:
By construction, AB = AC = BC (Radius of equal arcs)
And we also check the angles using the protector, we notice that all angles are ${60^0}$.
And we know that by the definition of an equilateral triangle that all the sides are equal and all the interior angles are ${60^0}$.
Hence we can say that $\vartriangle ABC$ is an equilateral triangle.
Note: - whenever we face such a type of construction question for justification and length is not given then assume any length for forming equilateral triangle. And we know that all the sides are equal in equilateral triangle so take the same lengths for forming the other sides. And by completing the construction we can easily verify our answer.
Complete step-by-step answer:
Now for constructing the equilateral triangle we first assume the length of the sides of the equilateral triangle.
Let us assume that the side of the equilateral triangle is 5cm.
And now for constructing the triangle the steps of constructions are:-
1) Draw a line segment AB of length 5cm.
2) Taking 5cm as radius, and A as center, draw an arc.
3) Taking 5cm as radius, and B as center, draw another arc such that it cuts another arc.
4) Let C be the point where the two arcs intersect.
5) Join AC and BC and label the sides.
By doing these steps we can see that a triangle ABC is formed.
For justification:
By construction, AB = AC = BC (Radius of equal arcs)
And we also check the angles using the protector, we notice that all angles are ${60^0}$.
And we know that by the definition of an equilateral triangle that all the sides are equal and all the interior angles are ${60^0}$.
Hence we can say that $\vartriangle ABC$ is an equilateral triangle.
Note: - whenever we face such a type of construction question for justification and length is not given then assume any length for forming equilateral triangle. And we know that all the sides are equal in equilateral triangle so take the same lengths for forming the other sides. And by completing the construction we can easily verify our answer.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What is the difference between rai and mustard see class 8 biology CBSE


