
Consider the given trigonometric expression: if sec(x - y), sec(x), sec(x + y) are in A.P. then $\cos x\sec \dfrac{y}{2}=$
(a) $\pm 2$
(b) $\pm \dfrac{1}{\sqrt{2}}$
(c) $\pm \dfrac{1}{2}$
(d) $\pm \sqrt{2}$
Answer
613.5k+ views
Hint: sec(x – y), sec(x), sec(x + y) are in A.P means, $2\sec x=\sec \left( x-y \right)+\sec \left( x+y \right)$.
Solve the above equation and find out the value of x and y. Then put those values in $\cos x\sec \dfrac{y}{2}$.
Complete step-by-step solution -
It is given in the question that sec(x – y), sec(x), sec(x + y) are in A.P. We know if a series a, b, c is in AP, then b – a = c – b. Applying this in the given series, we get
$\sec x-\sec (x-y)=\sec (x+y)-\sec x$
$\Rightarrow 2\sec x=\sec \left( x+y \right)+\sec \left( x-y \right)$
We know that, $\sec x=\dfrac{1}{\cos x}$. If we substitute cosine in the place of secant, we will get:
$\Rightarrow \dfrac{2}{\cos x}=\dfrac{1}{\cos \left( x+y \right)}+\dfrac{1}{\cos \left( x-y \right)}$
Now taking the LCM, we get
$\Rightarrow \dfrac{2}{\cos x}=\dfrac{\cos \left( x-y \right)+\cos \left( x+y \right)}{\cos \left( x+y \right)\cos \left( x-y \right)}$
By cross multiplying the above equation, we will get:
$\Rightarrow 2\cos \left( x-y \right)\cos \left( x+y \right)=\cos x\left[ \cos \left( x+y \right)+\cos \left( x-y \right) \right]$
Now we will apply the following formulas,
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B,\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ and
$2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$
Therefore we have,
$\Rightarrow \cos \left( x-y+x+y \right)+\cos \left( x-y-x-y \right)=\cos x\left[ \cos x\cos y-\sin x\sin y+\cos x\cos y+\sin x\sin y \right]$ By cancelling out the opposite terms we will get,
$\Rightarrow \cos \left( 2x \right)+\cos \left( -2y \right)=\cos x\left[ 2\cos x\cos y \right]$
$\Rightarrow \cos \left( 2x \right)+\cos \left( 2y \right)=2{{\cos }^{2}}x\cos y$, by applying $\cos \left( -\theta \right)=\cos \theta $.
Now we will apply the formula $\cos \left( 2A \right)=2{{\cos }^{2}}\left( A \right)-1$ in the above expression. Therefore,
$\Rightarrow 2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=2{{\cos }^{2}}x\cos y$
We will take all the terms in left hand side,
$\Rightarrow 2{{\cos }^{2}}x+2{{\cos }^{2}}y-2{{\cos }^{2}}x\cos y-2=0$
We can take 2 common from the left hand side. Therefore,
$\Rightarrow 2\left( {{\cos }^{2}}x+{{\cos }^{2}}y-{{\cos }^{2}}x\cos y-1 \right)=0$
$\Rightarrow {{\cos }^{2}}x+{{\cos }^{2}}y-{{\cos }^{2}}x\cos y-1=0$
$\Rightarrow {{\cos }^{2}}x(1-\cos y)-\left( 1-{{\cos }^{2}}y \right)=0$
Now applying the formula, ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$, so the above equation can be written as,
$\Rightarrow {{\cos }^{2}}x\left( 1-\cos y \right)-\left( 1-\cos y \right)\left( 1+\cos y \right)=0$
We can take $1-\cos y$ common. Therefore we have,
$\Rightarrow \left( 1-\cos y \right)\left( {{\cos }^{2}}x-\left( 1+\cos y \right) \right)=0$
$\Rightarrow \left( 1-\cos y \right)\left( {{\cos }^{2}}x-\cos y-1 \right)=0$
Either,
$1-\cos y=0\Rightarrow \cos y=1$
But we know $\cos ({{0}^{{}^\circ }})=1$, so
$\Rightarrow y=0.....(1)$
Or,
${{\cos }^{2}}x-\cos y-1=0$
If we put $\cos y=1$, we will get,
$\Rightarrow {{\cos }^{2}}x-1-1=0$
$\Rightarrow {{\cos }^{2}}x=2$
Taking square root on both sides, we get
$\Rightarrow \cos x=\pm \sqrt{2}.......(2)$
Now we need to find out the value of $\cos x\sec \left( \dfrac{y}{2} \right)$.
We will use the values from (1) and (2). Therefore,
$\cos x\sec \left( \dfrac{y}{2} \right)=\pm \sqrt{2}\sec \left( \dfrac{0}{2} \right)=\pm \sqrt{2}\sec \left( 0 \right)=\pm \sqrt{2}\times 1=\pm \sqrt{2}$
Hence,
$\cos x\sec \left( \dfrac{y}{2} \right)=\pm \sqrt{2}$
Therefore, option (d) is correct.
Note: We can make mistake while simplifying the expression:
$2\sec x=\sec \left( x+y \right)+\sec \left( x-y \right)$
Apply the formulas very carefully. Even a single mistake in sign will change the value completely.
Another approach is,
$\Rightarrow \cos \left( 2x \right)+\cos \left( 2y \right)=2{{\cos }^{2}}x\cos y$
Here we can apply the formula, $\cos 2x=2{{\cos }^{2}}x-1$ , we get
$\begin{align}
& \Rightarrow 2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=2{{\cos }^{2}}x\cos y \\
& \Rightarrow 2{{\cos }^{2}}x+2{{\cos }^{2}}y-2=2{{\cos }^{2}}x\cos y \\
& \Rightarrow {{\cos }^{2}}x+{{\cos }^{2}}y-1={{\cos }^{2}}x\cos y \\
& \Rightarrow {{\cos }^{2}}x+1-{{\sin }^{2}}y-1={{\cos }^{2}}x\cos y \\
& \Rightarrow {{\cos }^{2}}x-{{\sin }^{2}}y={{\cos }^{2}}x\cos y \\
\end{align}$
Solving this equation will lead to the desired result as above.
Solve the above equation and find out the value of x and y. Then put those values in $\cos x\sec \dfrac{y}{2}$.
Complete step-by-step solution -
It is given in the question that sec(x – y), sec(x), sec(x + y) are in A.P. We know if a series a, b, c is in AP, then b – a = c – b. Applying this in the given series, we get
$\sec x-\sec (x-y)=\sec (x+y)-\sec x$
$\Rightarrow 2\sec x=\sec \left( x+y \right)+\sec \left( x-y \right)$
We know that, $\sec x=\dfrac{1}{\cos x}$. If we substitute cosine in the place of secant, we will get:
$\Rightarrow \dfrac{2}{\cos x}=\dfrac{1}{\cos \left( x+y \right)}+\dfrac{1}{\cos \left( x-y \right)}$
Now taking the LCM, we get
$\Rightarrow \dfrac{2}{\cos x}=\dfrac{\cos \left( x-y \right)+\cos \left( x+y \right)}{\cos \left( x+y \right)\cos \left( x-y \right)}$
By cross multiplying the above equation, we will get:
$\Rightarrow 2\cos \left( x-y \right)\cos \left( x+y \right)=\cos x\left[ \cos \left( x+y \right)+\cos \left( x-y \right) \right]$
Now we will apply the following formulas,
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B,\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ and
$2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$
Therefore we have,
$\Rightarrow \cos \left( x-y+x+y \right)+\cos \left( x-y-x-y \right)=\cos x\left[ \cos x\cos y-\sin x\sin y+\cos x\cos y+\sin x\sin y \right]$ By cancelling out the opposite terms we will get,
$\Rightarrow \cos \left( 2x \right)+\cos \left( -2y \right)=\cos x\left[ 2\cos x\cos y \right]$
$\Rightarrow \cos \left( 2x \right)+\cos \left( 2y \right)=2{{\cos }^{2}}x\cos y$, by applying $\cos \left( -\theta \right)=\cos \theta $.
Now we will apply the formula $\cos \left( 2A \right)=2{{\cos }^{2}}\left( A \right)-1$ in the above expression. Therefore,
$\Rightarrow 2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=2{{\cos }^{2}}x\cos y$
We will take all the terms in left hand side,
$\Rightarrow 2{{\cos }^{2}}x+2{{\cos }^{2}}y-2{{\cos }^{2}}x\cos y-2=0$
We can take 2 common from the left hand side. Therefore,
$\Rightarrow 2\left( {{\cos }^{2}}x+{{\cos }^{2}}y-{{\cos }^{2}}x\cos y-1 \right)=0$
$\Rightarrow {{\cos }^{2}}x+{{\cos }^{2}}y-{{\cos }^{2}}x\cos y-1=0$
$\Rightarrow {{\cos }^{2}}x(1-\cos y)-\left( 1-{{\cos }^{2}}y \right)=0$
Now applying the formula, ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$, so the above equation can be written as,
$\Rightarrow {{\cos }^{2}}x\left( 1-\cos y \right)-\left( 1-\cos y \right)\left( 1+\cos y \right)=0$
We can take $1-\cos y$ common. Therefore we have,
$\Rightarrow \left( 1-\cos y \right)\left( {{\cos }^{2}}x-\left( 1+\cos y \right) \right)=0$
$\Rightarrow \left( 1-\cos y \right)\left( {{\cos }^{2}}x-\cos y-1 \right)=0$
Either,
$1-\cos y=0\Rightarrow \cos y=1$
But we know $\cos ({{0}^{{}^\circ }})=1$, so
$\Rightarrow y=0.....(1)$
Or,
${{\cos }^{2}}x-\cos y-1=0$
If we put $\cos y=1$, we will get,
$\Rightarrow {{\cos }^{2}}x-1-1=0$
$\Rightarrow {{\cos }^{2}}x=2$
Taking square root on both sides, we get
$\Rightarrow \cos x=\pm \sqrt{2}.......(2)$
Now we need to find out the value of $\cos x\sec \left( \dfrac{y}{2} \right)$.
We will use the values from (1) and (2). Therefore,
$\cos x\sec \left( \dfrac{y}{2} \right)=\pm \sqrt{2}\sec \left( \dfrac{0}{2} \right)=\pm \sqrt{2}\sec \left( 0 \right)=\pm \sqrt{2}\times 1=\pm \sqrt{2}$
Hence,
$\cos x\sec \left( \dfrac{y}{2} \right)=\pm \sqrt{2}$
Therefore, option (d) is correct.
Note: We can make mistake while simplifying the expression:
$2\sec x=\sec \left( x+y \right)+\sec \left( x-y \right)$
Apply the formulas very carefully. Even a single mistake in sign will change the value completely.
Another approach is,
$\Rightarrow \cos \left( 2x \right)+\cos \left( 2y \right)=2{{\cos }^{2}}x\cos y$
Here we can apply the formula, $\cos 2x=2{{\cos }^{2}}x-1$ , we get
$\begin{align}
& \Rightarrow 2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=2{{\cos }^{2}}x\cos y \\
& \Rightarrow 2{{\cos }^{2}}x+2{{\cos }^{2}}y-2=2{{\cos }^{2}}x\cos y \\
& \Rightarrow {{\cos }^{2}}x+{{\cos }^{2}}y-1={{\cos }^{2}}x\cos y \\
& \Rightarrow {{\cos }^{2}}x+1-{{\sin }^{2}}y-1={{\cos }^{2}}x\cos y \\
& \Rightarrow {{\cos }^{2}}x-{{\sin }^{2}}y={{\cos }^{2}}x\cos y \\
\end{align}$
Solving this equation will lead to the desired result as above.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

