
Consider the given expression \[\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{\left( 1+x+{{x}^{8}} \right)}^{2}}}dx=f\left( x \right)+c}\] then find $f\left( x \right)$
Answer
606.9k+ views
Hint: Take ${{x}^{8}}$ as common from the bracket of the denominator of the expression i.e. taking common ${{x}^{16}}$ as common from the denominator of the expression. And now suppose the term in bracket ‘t’ and differentiate it w.r.t $x$ . Now get the expression in terms of ‘t’ and get the integration with the help of formula
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$
Complete step-by-step answer:
Given expression in the problem is
\[\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{\left( 1+x+{{x}^{8}} \right)}^{2}}}dx=f\left( x \right)+c}.................\left( i \right)\]
So, let us suppose the integral given in the right-hand side of the equation (i) is I. So, we get
\[I=\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{\left( 1+x+{{x}^{8}} \right)}^{2}}}dx...................\left( ii \right)}\]
Taking ${{x}^{8}}$ common from the bracket of the denominator of the equation (ii). So, we can re-write the equation (ii) as
\[\begin{align}
& \Rightarrow I=\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{\left( {{x}^{8}}\left( \dfrac{1}{{{x}^{8}}}+\dfrac{x}{{{x}^{8}}}+\dfrac{{{x}^{8}}}{{{x}^{8}}} \right) \right)}^{2}}}}dx \\
& \Rightarrow I=\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{\left( {{x}^{8}}\left( {{x}^{-8}}+{{x}^{-7}}+1 \right) \right)}^{2}}}dx} \\
\end{align}\]
We can re-write the above equation as
\[\Rightarrow I=\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{x}^{16}}{{\left( {{x}^{-8}}+{{x}^{-7}}+1 \right)}^{2}}}dx}\]
Now, dividing the numerator by ${{x}^{16}}$ , we get
\[\Rightarrow I=\int{\dfrac{7{{x}^{-8}}+8{{x}^{-9}}}{{{\left( {{x}^{-8}}+{{x}^{-7}}+1 \right)}^{2}}}dx}................\left( iii \right)\]
Let us suppose ${{x}^{-8}}+{{x}^{-7}}+1$ as ‘t’. So, we can write an equation as
$t={{x}^{-8}}+{{x}^{-7}}+1..............\left( iv \right)$
Differentiating the above equation w.r.t. $'x'$ as
$\begin{align}
& \Rightarrow \dfrac{dt}{dx}=\dfrac{d}{dx}\left( {{x}^{-8}}+{{x}^{-7}}+1 \right) \\
& \Rightarrow \dfrac{dt}{dx}=\dfrac{d}{dx}{{x}^{-8}}+\dfrac{d}{dx}{{x}^{-7}}+\dfrac{d}{dx}\left( 1 \right) \\
\end{align}$
We know
$\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}},\dfrac{d}{dx}\left( \text{constant} \right)=0$
So, we can write $\dfrac{dt}{dx}$ as
$\begin{align}
& \Rightarrow \dfrac{dt}{dx}=-8{{x}^{-8-1}}+\left( -7 \right){{x}^{-7-1}}+0 \\
& \Rightarrow \dfrac{dt}{dx}=-8{{x}^{-9}}-7{{x}^{-8}} \\
& \Rightarrow dt=-\left( 7{{x}^{-8}}+8{{x}^{-9}} \right)dx.................\left( v \right) \\
\end{align}$
Now, we can replace ${{x}^{-8}}+{{x}^{-7}}+1$ by ‘t’ from the equation (iv) and $\left( 7{{x}^{-8}}+8{{x}^{-9}} \right)dx$ as $'-dt'$ from the equation (v). So, we can re-write integral I in terms of ‘t’ as
$\begin{align}
& \Rightarrow I=\int{\dfrac{-dt}{{{t}^{2}}}} \\
& \Rightarrow I=-\int{{{t}^{-2}}dt}.........................\left( vi \right) \\
\end{align}$
We know the integration of ${{x}^{n}}$ is given as
$\Rightarrow \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}.................\left( vii \right)}$
Hence, we get integral I of equation (vi), with the help of equation (vii) as
$\begin{align}
& \Rightarrow I=-\left( \dfrac{{{t}^{-2+1}}}{-2+1} \right)+c=\dfrac{-{{t}^{-1}}}{-1}+c \\
& \Rightarrow I=\dfrac{1}{t}+c \\
\end{align}$
Now, we can get integral I in terms of $x$ using equation (vi) as
$\begin{align}
& \Rightarrow I=\dfrac{1}{{{x}^{-8}}+{{x}^{-7}}+1}+c \\
& \Rightarrow I=\dfrac{1}{\dfrac{1}{{{x}^{8}}}+\dfrac{1}{{{x}^{7}}}+1}+c \\
& \Rightarrow I=\dfrac{{{x}^{8}}}{1+x+{{x}^{8}}}+c \\
\end{align}$
Now, comparing the above equation, with the R.H.S. of equation (i), we get
$f\left( x \right)=\dfrac{{{x}^{8}}}{1+x+{{x}^{8}}}$
Hence, option (a) is the correct answer.
Note: Another way of observing the integral would be that we can multiply the numerator and denominator by ${{x}^{16}}$ and hence, we get
\[\begin{align}
& \Rightarrow I=\int{\dfrac{\left( 7{{x}^{8}}+8{{x}^{7}} \right)\times {{x}^{16}}}{{{\left( 1+x+{{x}^{8}} \right)}^{2}}\times {{x}^{16}}}dx} \\
& \Rightarrow I=\int{\dfrac{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{x}^{16}}}}{\dfrac{{{\left( 1+x+{{x}^{8}} \right)}^{2}}}{{{x}^{16}}}}dx} \\
& \Rightarrow I=\int{\dfrac{7{{x}^{-8}}+8{{x}^{-9}}}{{{\left( \dfrac{1+x+{{x}^{8}}}{{{x}^{8}}} \right)}^{2}}}dx} \\
& \Rightarrow I=\dfrac{7{{x}^{-8}}+8{{x}^{-9}}}{{{\left( {{x}^{-8}}+{{x}^{-7}}+1 \right)}^{2}}} \\
\end{align}\]
So, it can be another approach to re-write the given integral.
Do not expand ${{\left( 1+x+{{x}^{8}} \right)}^{2}}$ to make the given integral complex. Taking out ${{x}^{8}}$ from the bracket of the denominator of the expression is the key point of the problem and there are a number of problems based on this approach. So, do remember this concept for future reference.
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$
Complete step-by-step answer:
Given expression in the problem is
\[\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{\left( 1+x+{{x}^{8}} \right)}^{2}}}dx=f\left( x \right)+c}.................\left( i \right)\]
So, let us suppose the integral given in the right-hand side of the equation (i) is I. So, we get
\[I=\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{\left( 1+x+{{x}^{8}} \right)}^{2}}}dx...................\left( ii \right)}\]
Taking ${{x}^{8}}$ common from the bracket of the denominator of the equation (ii). So, we can re-write the equation (ii) as
\[\begin{align}
& \Rightarrow I=\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{\left( {{x}^{8}}\left( \dfrac{1}{{{x}^{8}}}+\dfrac{x}{{{x}^{8}}}+\dfrac{{{x}^{8}}}{{{x}^{8}}} \right) \right)}^{2}}}}dx \\
& \Rightarrow I=\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{\left( {{x}^{8}}\left( {{x}^{-8}}+{{x}^{-7}}+1 \right) \right)}^{2}}}dx} \\
\end{align}\]
We can re-write the above equation as
\[\Rightarrow I=\int{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{x}^{16}}{{\left( {{x}^{-8}}+{{x}^{-7}}+1 \right)}^{2}}}dx}\]
Now, dividing the numerator by ${{x}^{16}}$ , we get
\[\Rightarrow I=\int{\dfrac{7{{x}^{-8}}+8{{x}^{-9}}}{{{\left( {{x}^{-8}}+{{x}^{-7}}+1 \right)}^{2}}}dx}................\left( iii \right)\]
Let us suppose ${{x}^{-8}}+{{x}^{-7}}+1$ as ‘t’. So, we can write an equation as
$t={{x}^{-8}}+{{x}^{-7}}+1..............\left( iv \right)$
Differentiating the above equation w.r.t. $'x'$ as
$\begin{align}
& \Rightarrow \dfrac{dt}{dx}=\dfrac{d}{dx}\left( {{x}^{-8}}+{{x}^{-7}}+1 \right) \\
& \Rightarrow \dfrac{dt}{dx}=\dfrac{d}{dx}{{x}^{-8}}+\dfrac{d}{dx}{{x}^{-7}}+\dfrac{d}{dx}\left( 1 \right) \\
\end{align}$
We know
$\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}},\dfrac{d}{dx}\left( \text{constant} \right)=0$
So, we can write $\dfrac{dt}{dx}$ as
$\begin{align}
& \Rightarrow \dfrac{dt}{dx}=-8{{x}^{-8-1}}+\left( -7 \right){{x}^{-7-1}}+0 \\
& \Rightarrow \dfrac{dt}{dx}=-8{{x}^{-9}}-7{{x}^{-8}} \\
& \Rightarrow dt=-\left( 7{{x}^{-8}}+8{{x}^{-9}} \right)dx.................\left( v \right) \\
\end{align}$
Now, we can replace ${{x}^{-8}}+{{x}^{-7}}+1$ by ‘t’ from the equation (iv) and $\left( 7{{x}^{-8}}+8{{x}^{-9}} \right)dx$ as $'-dt'$ from the equation (v). So, we can re-write integral I in terms of ‘t’ as
$\begin{align}
& \Rightarrow I=\int{\dfrac{-dt}{{{t}^{2}}}} \\
& \Rightarrow I=-\int{{{t}^{-2}}dt}.........................\left( vi \right) \\
\end{align}$
We know the integration of ${{x}^{n}}$ is given as
$\Rightarrow \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}.................\left( vii \right)}$
Hence, we get integral I of equation (vi), with the help of equation (vii) as
$\begin{align}
& \Rightarrow I=-\left( \dfrac{{{t}^{-2+1}}}{-2+1} \right)+c=\dfrac{-{{t}^{-1}}}{-1}+c \\
& \Rightarrow I=\dfrac{1}{t}+c \\
\end{align}$
Now, we can get integral I in terms of $x$ using equation (vi) as
$\begin{align}
& \Rightarrow I=\dfrac{1}{{{x}^{-8}}+{{x}^{-7}}+1}+c \\
& \Rightarrow I=\dfrac{1}{\dfrac{1}{{{x}^{8}}}+\dfrac{1}{{{x}^{7}}}+1}+c \\
& \Rightarrow I=\dfrac{{{x}^{8}}}{1+x+{{x}^{8}}}+c \\
\end{align}$
Now, comparing the above equation, with the R.H.S. of equation (i), we get
$f\left( x \right)=\dfrac{{{x}^{8}}}{1+x+{{x}^{8}}}$
Hence, option (a) is the correct answer.
Note: Another way of observing the integral would be that we can multiply the numerator and denominator by ${{x}^{16}}$ and hence, we get
\[\begin{align}
& \Rightarrow I=\int{\dfrac{\left( 7{{x}^{8}}+8{{x}^{7}} \right)\times {{x}^{16}}}{{{\left( 1+x+{{x}^{8}} \right)}^{2}}\times {{x}^{16}}}dx} \\
& \Rightarrow I=\int{\dfrac{\dfrac{7{{x}^{8}}+8{{x}^{7}}}{{{x}^{16}}}}{\dfrac{{{\left( 1+x+{{x}^{8}} \right)}^{2}}}{{{x}^{16}}}}dx} \\
& \Rightarrow I=\int{\dfrac{7{{x}^{-8}}+8{{x}^{-9}}}{{{\left( \dfrac{1+x+{{x}^{8}}}{{{x}^{8}}} \right)}^{2}}}dx} \\
& \Rightarrow I=\dfrac{7{{x}^{-8}}+8{{x}^{-9}}}{{{\left( {{x}^{-8}}+{{x}^{-7}}+1 \right)}^{2}}} \\
\end{align}\]
So, it can be another approach to re-write the given integral.
Do not expand ${{\left( 1+x+{{x}^{8}} \right)}^{2}}$ to make the given integral complex. Taking out ${{x}^{8}}$ from the bracket of the denominator of the expression is the key point of the problem and there are a number of problems based on this approach. So, do remember this concept for future reference.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

