
Consider the function \[f\left( x \right)=\left| \sin x \right|+\left| \cos x \right|\] for \[0 < x < 2\pi \]. Then
(a) \[f\left( x \right)\]is differentiable \[\forall x\in \left( 0,2\pi \right)\]
(b) \[f\left( x \right)\]is not differentiable at \[x=\dfrac{\pi }{2},\pi \]and \[\dfrac{3\pi }{2}\]and differentiable at all other values in \[\left( 0,2\pi \right)\]
(c) \[f\left( x \right)\]is not differentiable at \[x=\dfrac{\pi }{2}\]and \[\dfrac{3\pi }{2}\]and differentiable at all other values in \[\left( 0,2\pi \right)\]
(d) \[f\]is discontinuous at \[x=\dfrac{\pi }{2},\pi \]and \[\dfrac{3\pi }{2}\]
Answer
601.5k+ views
Hint: A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right-hand derivative of the function at \[x=a\] .
Complete step-by-step answer:
We know \[\left| \sin x \right|=\left\{ \begin{align}
& \sin x,0\le x\le \pi \\
& -\sin x,\pi \le x\le 2\pi \\
\end{align} \right.\]
and \[\left| \cos x \right|=\left\{ \begin{align}
& \cos x,\text{ }0\le x\le \dfrac{\pi }{2} \\
& -\cos x,\text{ }\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \\
& \cos x,\text{ }\dfrac{3\pi }{2}\le x\le 2\pi \\
\end{align} \right.\]
So, we can rewrite the function as,
\[f\left( x \right)=\left\{ \begin{align}
& \sin x+\cos x,\text{ }0\le x\le \dfrac{\pi }{2} \\
& \sin x-\cos x,\text{ }\dfrac{\pi }{2}\le x\le \pi \\
& -\sin x-\cos x,\text{ }\pi \le x\le \dfrac{3\pi }{2} \\
& -\sin x+\cos x,\text{ }\dfrac{3\pi }{2}\le x\le 2\pi \\
\end{align} \right.\]
Now, for \[f\left( x \right)\] to be differentiable at \[x=a\] , the left-hand derivative should be equal to the right-hand derivative at \[x=a\] .
We know, the left-hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right-hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\] .
Now, we will check the differentiability of \[f\left( x \right)\] at \[\dfrac{\pi }{2}\] .
The left-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{\pi }{2}\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \dfrac{\pi }{2}-h \right)-f\left( \dfrac{\pi }{2} \right)}{-h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{\pi }{2}-h \right)+\cos \left( \dfrac{\pi }{2}-h \right)-\left( \sin \dfrac{\pi }{2}+\cos \dfrac{\pi }{2} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\cos \text{ }h+\sin \text{ }h-1}{-h}\]
Now, on substituting \[h=0\] in the limit, we can see that it gives an indeterminate value \[\dfrac{0}{0}\] . In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \] , then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So, to find the value of the limit, we must differentiate the numerator and the denominator with respect to \[x\] .
So, \[L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{-1}\]
\[=-1\]
The right-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{\pi }{2}\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \dfrac{\pi }{2}+h \right)-f\left( \dfrac{\pi }{2} \right)}{h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{\pi }{2}+h \right)-\cos \left( \dfrac{\pi }{2}+h \right)-\left( \sin \dfrac{\pi }{2}-\cos \dfrac{\pi }{2} \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\cos \text{ }h+\sin \text{ }h-1}{h}\]
Again, applying L’ Hopital’s rule, we get \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{1}\] .
\[=1\]
The left-hand derivative of \[f\left( x \right)\] is not equal to the right-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{\pi }{2}\] .
So, the function is not differentiable at \[x=\dfrac{\pi }{2}\] .
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=\pi \] . The left-hand derivative of \[f\left( x \right)\] at \[x=\pi \] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \pi -h \right)-f\left( \pi \right)}{-h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( \pi -h \right)-\cos \left( \pi -h \right)-\left( \sin \pi -\cos \pi \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\cos \text{ }h+\sin \text{ }h-1}{-h}\]
Applying L’ Hopital’s rule, we get \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{-1}\] .
\[=\dfrac{0+1}{-1}=-1\]
The right-hand derivative of \[f\left( x \right)\] at \[x=\pi \] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \pi +h \right)-f\left( \pi \right)}{h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sin \left( \pi +h \right)-\cos \left( \pi +h \right)-\left( -\sin \pi -\cos \pi \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{sin }h+\cos \text{ }h-1}{h}\]
Applying L’ Hopital’s rule, we get \[{{R}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\text{cos }h-\sin \text{ }h}{1}\] .
\[=1\]
The left-hand derivative is not equal to the right-hand derivative.
So, the function \[f\left( x \right)\] is not differentiable at \[x=\pi \] .
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=\dfrac{3\pi }{2}\] . The left-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{3\pi }{2}\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \dfrac{3\pi }{2}-h \right)-f\left( \dfrac{3\pi }{2} \right)}{-h}\] . \[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sin \left( \dfrac{3\pi }{2}-h \right)-\cos \left( \dfrac{3\pi }{2}-h \right)-\left( -\sin \dfrac{3\pi }{2}-\cos \dfrac{3\pi }{2} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{cos }h+\sin \text{ }h-\left( 1 \right)}{-h}\]
Applying L’ Hopital’s rule, we get \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{-1}=-1\] . The right-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{3\pi }{2}\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \dfrac{3\pi }{2}+h \right)-f\left( \dfrac{3\pi }{2} \right)}{h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sin \left( \dfrac{3\pi }{2}+h \right)+\cos \left( \dfrac{3\pi }{2}+h \right)-\left( -\sin \dfrac{3\pi }{2}+\cos \dfrac{3\pi }{2} \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{cos }h+\sin \text{ }h-\left( 1 \right)}{h}\]
Applying L’ Hopital’s rule, we get \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{1}\] .
\[=1\]
The left-hand derivative of \[f\left( x \right)\] is not equal to the right-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{3\pi }{2}\] . So, the function is not differentiable at \[x=\dfrac{3\pi }{2}\] .
Now, we will check the continuity of the function at critical points. A function is continuous at a point if the value of limit at that point is equal to the value of the function at that point.
The left-hand limit of the function at $\dfrac{\pi }{2}$ is given as: \[\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\left( \sin x+\cos x \right)=\left( \sin \dfrac{\pi }{2}+\cos \dfrac{\pi }{2} \right)=1\]
The right-hand limit of the function at $\dfrac{\pi }{2}$ is given as: \[\underset{x\to {{\dfrac{\pi }{2}}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\dfrac{\pi }{2}}^{+}}}{\mathop{\lim }}\,\left( \sin x-\cos x \right)=\left( \sin \dfrac{\pi }{2}-\cos \dfrac{\pi }{2} \right)=1\]
The value of the function at $\dfrac{\pi }{2}$ is given as $f\left( \dfrac{\pi }{2} \right)=\sin \dfrac{\pi }{2}+\cos \dfrac{\pi }{2}=1$ . We can see that the value of the left-hand limit of the function is equal to the value of the right-hand limit of the function at $\dfrac{\pi }{2}$ and both are equal to the value of the function at $\dfrac{\pi }{2}$ . So, the function is continuous at $\dfrac{\pi }{2}$ . So, option D. is incorrect.
Hence, \[f\left( x \right)\] is not differentiable at \[x=\dfrac{\pi }{2},\pi \] and \[\dfrac{3\pi }{2}\]. And differentiable at all other values in \[\left( 0,2\pi \right)\]
Answer is (c)
Note: The left-hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right-hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\] . Students generally get confused between the two functions. Try to practice many questions based on these formulae so that confusion can be avoided.
Complete step-by-step answer:
We know \[\left| \sin x \right|=\left\{ \begin{align}
& \sin x,0\le x\le \pi \\
& -\sin x,\pi \le x\le 2\pi \\
\end{align} \right.\]
and \[\left| \cos x \right|=\left\{ \begin{align}
& \cos x,\text{ }0\le x\le \dfrac{\pi }{2} \\
& -\cos x,\text{ }\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \\
& \cos x,\text{ }\dfrac{3\pi }{2}\le x\le 2\pi \\
\end{align} \right.\]
So, we can rewrite the function as,
\[f\left( x \right)=\left\{ \begin{align}
& \sin x+\cos x,\text{ }0\le x\le \dfrac{\pi }{2} \\
& \sin x-\cos x,\text{ }\dfrac{\pi }{2}\le x\le \pi \\
& -\sin x-\cos x,\text{ }\pi \le x\le \dfrac{3\pi }{2} \\
& -\sin x+\cos x,\text{ }\dfrac{3\pi }{2}\le x\le 2\pi \\
\end{align} \right.\]
Now, for \[f\left( x \right)\] to be differentiable at \[x=a\] , the left-hand derivative should be equal to the right-hand derivative at \[x=a\] .
We know, the left-hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right-hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\] .
Now, we will check the differentiability of \[f\left( x \right)\] at \[\dfrac{\pi }{2}\] .
The left-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{\pi }{2}\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \dfrac{\pi }{2}-h \right)-f\left( \dfrac{\pi }{2} \right)}{-h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{\pi }{2}-h \right)+\cos \left( \dfrac{\pi }{2}-h \right)-\left( \sin \dfrac{\pi }{2}+\cos \dfrac{\pi }{2} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\cos \text{ }h+\sin \text{ }h-1}{-h}\]
Now, on substituting \[h=0\] in the limit, we can see that it gives an indeterminate value \[\dfrac{0}{0}\] . In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \] , then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So, to find the value of the limit, we must differentiate the numerator and the denominator with respect to \[x\] .
So, \[L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{-1}\]
\[=-1\]
The right-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{\pi }{2}\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \dfrac{\pi }{2}+h \right)-f\left( \dfrac{\pi }{2} \right)}{h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{\pi }{2}+h \right)-\cos \left( \dfrac{\pi }{2}+h \right)-\left( \sin \dfrac{\pi }{2}-\cos \dfrac{\pi }{2} \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\cos \text{ }h+\sin \text{ }h-1}{h}\]
Again, applying L’ Hopital’s rule, we get \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{1}\] .
\[=1\]
The left-hand derivative of \[f\left( x \right)\] is not equal to the right-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{\pi }{2}\] .
So, the function is not differentiable at \[x=\dfrac{\pi }{2}\] .
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=\pi \] . The left-hand derivative of \[f\left( x \right)\] at \[x=\pi \] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \pi -h \right)-f\left( \pi \right)}{-h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( \pi -h \right)-\cos \left( \pi -h \right)-\left( \sin \pi -\cos \pi \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\cos \text{ }h+\sin \text{ }h-1}{-h}\]
Applying L’ Hopital’s rule, we get \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{-1}\] .
\[=\dfrac{0+1}{-1}=-1\]
The right-hand derivative of \[f\left( x \right)\] at \[x=\pi \] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \pi +h \right)-f\left( \pi \right)}{h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sin \left( \pi +h \right)-\cos \left( \pi +h \right)-\left( -\sin \pi -\cos \pi \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{sin }h+\cos \text{ }h-1}{h}\]
Applying L’ Hopital’s rule, we get \[{{R}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\text{cos }h-\sin \text{ }h}{1}\] .
\[=1\]
The left-hand derivative is not equal to the right-hand derivative.
So, the function \[f\left( x \right)\] is not differentiable at \[x=\pi \] .
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=\dfrac{3\pi }{2}\] . The left-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{3\pi }{2}\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \dfrac{3\pi }{2}-h \right)-f\left( \dfrac{3\pi }{2} \right)}{-h}\] . \[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sin \left( \dfrac{3\pi }{2}-h \right)-\cos \left( \dfrac{3\pi }{2}-h \right)-\left( -\sin \dfrac{3\pi }{2}-\cos \dfrac{3\pi }{2} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{cos }h+\sin \text{ }h-\left( 1 \right)}{-h}\]
Applying L’ Hopital’s rule, we get \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{-1}=-1\] . The right-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{3\pi }{2}\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( \dfrac{3\pi }{2}+h \right)-f\left( \dfrac{3\pi }{2} \right)}{h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sin \left( \dfrac{3\pi }{2}+h \right)+\cos \left( \dfrac{3\pi }{2}+h \right)-\left( -\sin \dfrac{3\pi }{2}+\cos \dfrac{3\pi }{2} \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{cos }h+\sin \text{ }h-\left( 1 \right)}{h}\]
Applying L’ Hopital’s rule, we get \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\text{-sin }h+\cos \text{ }h}{1}\] .
\[=1\]
The left-hand derivative of \[f\left( x \right)\] is not equal to the right-hand derivative of \[f\left( x \right)\] at \[x=\dfrac{3\pi }{2}\] . So, the function is not differentiable at \[x=\dfrac{3\pi }{2}\] .
Now, we will check the continuity of the function at critical points. A function is continuous at a point if the value of limit at that point is equal to the value of the function at that point.
The left-hand limit of the function at $\dfrac{\pi }{2}$ is given as: \[\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\left( \sin x+\cos x \right)=\left( \sin \dfrac{\pi }{2}+\cos \dfrac{\pi }{2} \right)=1\]
The right-hand limit of the function at $\dfrac{\pi }{2}$ is given as: \[\underset{x\to {{\dfrac{\pi }{2}}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\dfrac{\pi }{2}}^{+}}}{\mathop{\lim }}\,\left( \sin x-\cos x \right)=\left( \sin \dfrac{\pi }{2}-\cos \dfrac{\pi }{2} \right)=1\]
The value of the function at $\dfrac{\pi }{2}$ is given as $f\left( \dfrac{\pi }{2} \right)=\sin \dfrac{\pi }{2}+\cos \dfrac{\pi }{2}=1$ . We can see that the value of the left-hand limit of the function is equal to the value of the right-hand limit of the function at $\dfrac{\pi }{2}$ and both are equal to the value of the function at $\dfrac{\pi }{2}$ . So, the function is continuous at $\dfrac{\pi }{2}$ . So, option D. is incorrect.
Hence, \[f\left( x \right)\] is not differentiable at \[x=\dfrac{\pi }{2},\pi \] and \[\dfrac{3\pi }{2}\]. And differentiable at all other values in \[\left( 0,2\pi \right)\]
Answer is (c)
Note: The left-hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right-hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\] . Students generally get confused between the two functions. Try to practice many questions based on these formulae so that confusion can be avoided.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

