Answer
Verified
430.5k+ views
Hint: We need to show that \[f\left( x \right)=x-x\left( x \right)\] is discontinuous for integral values of $x$ and continuous for all others. We have to find the continuity at a point $x=c$ such that $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)=f(c)$ . By using the equation $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{h\to 0}f(c-h)$ for LHS and $\displaystyle \lim_{x \to {{c}^{+}}}f(x)=\displaystyle \lim_{h\to 0}f(c+h)$ for RHS , we can find the continuity of the function. Next, to plot the graph, we need to find the points. For this, we will use \[(x)=\left\{ \begin{align}
& ... \\
& .. \\
& \begin{matrix}
-1 & ; & -1\le x<0 \\
\end{matrix} \\
& \begin{matrix}
0 & ; & 0\le x<1 \\
\end{matrix} \\
& \begin{matrix}
1 & ; & 1\le x<2 \\
\end{matrix} \\
& ... \\
& ... \\
\end{align} \right.\] for integral value from which we can get the points for the given function by suitable substitution. From the graph, we can analyze whether the function is periodic or not.
Complete step by step answer:
We need to show that \[f\left( x \right)=x-x\left( x \right)\] is discontinuous for integral values of $x$ and continuous for all others.
Let $c$ be an integer.
$f(x)$ is continuous at $x=c$ if
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)=f(c)$
Let us first evaluate LHS
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{h\to 0}f(c-h)$
Substituting for $x=c-h$ in \[f\left( x \right)=x-x\left( x \right)\] , we get
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{h\to 0}(c-h)-(c-h)[c-h]$
We know that integral part of $[c-h]=(c-1)$ .
Therefore, $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{h\to 0}(c-h)-(c-h)(c-1)$
Applying the limit, we get
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=(c-0)-(c-0)(c-1)$
$\Rightarrow \displaystyle \lim_{x \to {{c}^{-}}}f(x)=c-c(c-1)$
On simplifying further, we get
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=c-{{c}^{2}}+c$
\[\Rightarrow \displaystyle \lim_{x \to {{c}^{-}}}f(x)=2c-{{c}^{2}}...(i)\]
Similarly, we do for RHS.
$\displaystyle \lim_{x \to {{c}^{+}}}f(x)=\displaystyle \lim_{h\to 0}f(c+h)$
Substituting the value $x=c-h$ in \[f\left( x \right)=x-x\left( x \right)\] , we get
$\displaystyle \lim_{x \to {{c}^{+}}}f(x)=\displaystyle \lim_{h\to 0}(c+h)-(c+h)[c+h]$
We know that integral part of $[c-h]=c$ .
Therefore, $\displaystyle \lim_{x \to {{c}^{+}}}f(x)=\displaystyle \lim_{h\to 0}(c+h)-(c+h)c$
Applying the limit, we get
$\displaystyle \lim_{x \to {{c}^{+}}}f(x)=(c+0)-(c+0)c$
$\Rightarrow \displaystyle \lim_{x \to {{c}^{+}}}f(x)=c-{{c}^{2}}...(ii)$
From $(i)\text{ and }(ii)$ ,
$LHS\ne RHS$
Thus, $f(x)$ is not continuous at $x=c$ .
That is, $f(x)$ is not continuous at all integral points. Hence, it will be continuous at other points.
Now let us plot the graph of \[f\left( x \right)=x-x\left( x \right)\] .
We know that \[(x)=\left\{ \begin{align}
& ... \\
& .. \\
& \begin{matrix}
-1 & ; & -1\le x<0 \\
\end{matrix} \\
& \begin{matrix}
0 & ; & 0\le x<1 \\
\end{matrix} \\
& \begin{matrix}
1 & ; & 1\le x<2 \\
\end{matrix} \\
& ... \\
& ... \\
\end{align} \right.\]
Therefore, \[f\left( x \right)=x-x\left( x \right)=\left\{ \begin{align}
& ... \\
& .. \\
& \begin{matrix}
x-x(-1) & ; & -1\le x<0 \\
\end{matrix} \\
& \begin{matrix}
x-x(0) & ; & 0\le x<1 \\
\end{matrix} \\
& \begin{matrix}
x-x(1) & ; & 1\le x<2 \\
\end{matrix} \\
& ... \\
& ... \\
\end{align} \right.\]
Solving, we get
\[f\left( x \right)=\left\{ \begin{align}
& ... \\
& .. \\
& \begin{matrix}
2x & ; & -1\le x<0 \\
\end{matrix} \\
& \begin{matrix}
x & ; & 0\le x<1 \\
\end{matrix} \\
& \begin{matrix}
0 & ; & 1\le x<2 \\
\end{matrix} \\
& ... \\
& ... \\
\end{align} \right.\]
Now let us plot the graph.
From the graph, it is clear that the function \[f\left( x \right)=x-x\left( x \right)\] is not periodic.
Note:
Let us see what is the value of the greatest integer.
If $x=3$ then $(x)\text{ or }[x]=3$ .
If $x=6.55$ then $(x)\text{ or }[x]=6$ .
Therefore, If \[x=c\] then $(x)\text{ or }[x]=c$
If \[x={{c}^{+}}=c+h\] then $(x)\text{ or }[x]=c$
If \[x={{c}^{-}}=c-h\] then $(x)\text{ or }[x]=c-1$
If A function $f(x)$ is continuous at $x=c$ if $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)=f(c)$ . This is the main criteria of continuity. In this problem, the given function is not periodic. Periodic functions are functions that that repeats its values at regular intervals, for example, the trigonometric functions. Period of a function is distance between the repetitions of any function or it is the distance along the x-axis that the function has to travel before it starts to repeat its pattern.
& ... \\
& .. \\
& \begin{matrix}
-1 & ; & -1\le x<0 \\
\end{matrix} \\
& \begin{matrix}
0 & ; & 0\le x<1 \\
\end{matrix} \\
& \begin{matrix}
1 & ; & 1\le x<2 \\
\end{matrix} \\
& ... \\
& ... \\
\end{align} \right.\] for integral value from which we can get the points for the given function by suitable substitution. From the graph, we can analyze whether the function is periodic or not.
Complete step by step answer:
We need to show that \[f\left( x \right)=x-x\left( x \right)\] is discontinuous for integral values of $x$ and continuous for all others.
Let $c$ be an integer.
$f(x)$ is continuous at $x=c$ if
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)=f(c)$
Let us first evaluate LHS
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{h\to 0}f(c-h)$
Substituting for $x=c-h$ in \[f\left( x \right)=x-x\left( x \right)\] , we get
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{h\to 0}(c-h)-(c-h)[c-h]$
We know that integral part of $[c-h]=(c-1)$ .
Therefore, $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{h\to 0}(c-h)-(c-h)(c-1)$
Applying the limit, we get
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=(c-0)-(c-0)(c-1)$
$\Rightarrow \displaystyle \lim_{x \to {{c}^{-}}}f(x)=c-c(c-1)$
On simplifying further, we get
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=c-{{c}^{2}}+c$
\[\Rightarrow \displaystyle \lim_{x \to {{c}^{-}}}f(x)=2c-{{c}^{2}}...(i)\]
Similarly, we do for RHS.
$\displaystyle \lim_{x \to {{c}^{+}}}f(x)=\displaystyle \lim_{h\to 0}f(c+h)$
Substituting the value $x=c-h$ in \[f\left( x \right)=x-x\left( x \right)\] , we get
$\displaystyle \lim_{x \to {{c}^{+}}}f(x)=\displaystyle \lim_{h\to 0}(c+h)-(c+h)[c+h]$
We know that integral part of $[c-h]=c$ .
Therefore, $\displaystyle \lim_{x \to {{c}^{+}}}f(x)=\displaystyle \lim_{h\to 0}(c+h)-(c+h)c$
Applying the limit, we get
$\displaystyle \lim_{x \to {{c}^{+}}}f(x)=(c+0)-(c+0)c$
$\Rightarrow \displaystyle \lim_{x \to {{c}^{+}}}f(x)=c-{{c}^{2}}...(ii)$
From $(i)\text{ and }(ii)$ ,
$LHS\ne RHS$
Thus, $f(x)$ is not continuous at $x=c$ .
That is, $f(x)$ is not continuous at all integral points. Hence, it will be continuous at other points.
Now let us plot the graph of \[f\left( x \right)=x-x\left( x \right)\] .
We know that \[(x)=\left\{ \begin{align}
& ... \\
& .. \\
& \begin{matrix}
-1 & ; & -1\le x<0 \\
\end{matrix} \\
& \begin{matrix}
0 & ; & 0\le x<1 \\
\end{matrix} \\
& \begin{matrix}
1 & ; & 1\le x<2 \\
\end{matrix} \\
& ... \\
& ... \\
\end{align} \right.\]
Therefore, \[f\left( x \right)=x-x\left( x \right)=\left\{ \begin{align}
& ... \\
& .. \\
& \begin{matrix}
x-x(-1) & ; & -1\le x<0 \\
\end{matrix} \\
& \begin{matrix}
x-x(0) & ; & 0\le x<1 \\
\end{matrix} \\
& \begin{matrix}
x-x(1) & ; & 1\le x<2 \\
\end{matrix} \\
& ... \\
& ... \\
\end{align} \right.\]
Solving, we get
\[f\left( x \right)=\left\{ \begin{align}
& ... \\
& .. \\
& \begin{matrix}
2x & ; & -1\le x<0 \\
\end{matrix} \\
& \begin{matrix}
x & ; & 0\le x<1 \\
\end{matrix} \\
& \begin{matrix}
0 & ; & 1\le x<2 \\
\end{matrix} \\
& ... \\
& ... \\
\end{align} \right.\]
Now let us plot the graph.
From the graph, it is clear that the function \[f\left( x \right)=x-x\left( x \right)\] is not periodic.
Note:
Let us see what is the value of the greatest integer.
If $x=3$ then $(x)\text{ or }[x]=3$ .
If $x=6.55$ then $(x)\text{ or }[x]=6$ .
Therefore, If \[x=c\] then $(x)\text{ or }[x]=c$
If \[x={{c}^{+}}=c+h\] then $(x)\text{ or }[x]=c$
If \[x={{c}^{-}}=c-h\] then $(x)\text{ or }[x]=c-1$
If A function $f(x)$ is continuous at $x=c$ if $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)=f(c)$ . This is the main criteria of continuity. In this problem, the given function is not periodic. Periodic functions are functions that that repeats its values at regular intervals, for example, the trigonometric functions. Period of a function is distance between the repetitions of any function or it is the distance along the x-axis that the function has to travel before it starts to repeat its pattern.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell