
Consider that the equation $p=\dfrac{150}{{{q}^{2}}+2}-4$ represents the demand function for a product where p is the price per unit for q units. Determine the marginal revenue.
Answer
506.7k+ views
Hint:To find the marginal revenue, we have to first find the total revenue using the formula $TR\left( q \right)=pq$ , where p is the price per unit and q is the number of units. Marginal revenue can be found by differentiating total revenue with respect to q.
Complete step-by-step solution:
We are given with the demand function $p=\dfrac{150}{{{q}^{2}}+2}-4$ . Let us find the revenue function. We know that revenue is the number of units sold times the price per unit.
$\Rightarrow TR\left( q \right)=pq$
Where p is the price per unit and q is the number of units. p is also the demand function.
$\begin{align}
& \Rightarrow TR\left( q \right)=\left( \dfrac{150}{{{q}^{2}}+2}-4 \right)q \\
& \Rightarrow TR\left( q \right)=\left( \dfrac{150-4{{q}^{2}}-8}{{{q}^{2}}+2} \right)q \\
& \Rightarrow TR\left( q \right)=\left( \dfrac{150q-4{{q}^{3}}-8q}{{{q}^{2}}+2} \right) \\
\end{align}$
Now, let us find the marginal revenue. We know that marginal revenue is change in total revenue divided by change in quantity.
$\begin{align}
& \Rightarrow \text{Marginal Revenue}\left( \text{MR} \right)=\dfrac{\text{Change in total revenue}}{\text{Change in quantity}} \\
& \Rightarrow MR=\dfrac{\Delta TR}{\Delta q} \\
\end{align}$
We have to differentiate $TR\left( q \right)$ with respect to q.
$\Rightarrow MR=\dfrac{d}{dq}\left( \dfrac{150q-4{{q}^{3}}-8q}{{{q}^{2}}+2} \right)$
We have to apply the quotient rule which is given by $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$ .
$\Rightarrow MR=\dfrac{\left( {{q}^{2}}+2 \right)\dfrac{d}{dq}\left( 150q-4{{q}^{3}}-8q \right)-\left( 150q-4{{q}^{3}}-8q \right)\dfrac{d}{dq}\left( {{q}^{2}}+2 \right)}{{{\left( {{q}^{2}}+2 \right)}^{2}}}$
We know that $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ . Therefore, the above equation can be written as
$\begin{align}
& \Rightarrow MR=\dfrac{\left( {{q}^{2}}+2 \right)\left( 150-12{{q}^{2}}-8 \right)-\left( 150q-4{{q}^{3}}-8q \right)2q}{{{\left( {{q}^{2}}+2 \right)}^{2}}} \\
& \Rightarrow MR=\dfrac{\left( {{q}^{2}}+2 \right)\left( 142-12{{q}^{2}} \right)-\left( 150q-4{{q}^{3}}-8q \right)2q}{{{\left( {{q}^{2}}+2 \right)}^{2}}} \\
\end{align}$
Let us apply the distributive property.
$\Rightarrow MR=\dfrac{142{{q}^{2}}-12{{q}^{4}}+284-24{{q}^{2}}-300{{q}^{2}}+8{{q}^{4}}+16{{q}^{2}}}{{{\left( {{q}^{2}}+2 \right)}^{2}}}$
We have to add the like terms.
$\Rightarrow MR=\dfrac{-4{{q}^{4}}-166{{q}^{2}}+284}{{{\left( {{q}^{2}}+2 \right)}^{2}}}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ . Therefore, the denominator of the above equation can be written as
$\Rightarrow MR=\dfrac{-4{{q}^{4}}-166{{q}^{2}}+284}{{{q}^{4}}+4{{q}^{2}}+4}$
Let us divide $-4{{q}^{4}}-166{{q}^{2}}+284$ by ${{q}^{4}}+4{{q}^{2}}+4$ .
\[\begin{align}
& {{q}^{4}}+4{{q}^{2}}+4\overset{-4}{\overline{\left){-4{{q}^{4}}-166{{q}^{2}}+284}\right.}} \\
& \text{ }\underline{\begin{align}
& -4{{q}^{4}}-16{{q}^{2}}-16 \\
& \begin{matrix}
\left( + \right) & \left( + \right) & \left( + \right) \\
\end{matrix} \\
\end{align}} \\
& \text{ }-150{{q}^{2}}+300 \\
\end{align}\]
We can write the result in the form $\text{Quotient}+\dfrac{\text{Remainder}}{\text{Divisor}}$ .
$\Rightarrow MR=-4+\dfrac{-150{{q}^{2}}+300}{{{q}^{4}}+4{{q}^{2}}+4}$
Hence, the marginal revenue is $-4+\dfrac{-150{{q}^{2}}+300}{{{q}^{4}}+4{{q}^{2}}+4}$ .
Note: Students must be thorough with the formulas of total revenue and marginal revenue. They have a chance of making a mistake by writing the formula for marginal revenue as the change in quantity divided by total revenue.
Complete step-by-step solution:
We are given with the demand function $p=\dfrac{150}{{{q}^{2}}+2}-4$ . Let us find the revenue function. We know that revenue is the number of units sold times the price per unit.
$\Rightarrow TR\left( q \right)=pq$
Where p is the price per unit and q is the number of units. p is also the demand function.
$\begin{align}
& \Rightarrow TR\left( q \right)=\left( \dfrac{150}{{{q}^{2}}+2}-4 \right)q \\
& \Rightarrow TR\left( q \right)=\left( \dfrac{150-4{{q}^{2}}-8}{{{q}^{2}}+2} \right)q \\
& \Rightarrow TR\left( q \right)=\left( \dfrac{150q-4{{q}^{3}}-8q}{{{q}^{2}}+2} \right) \\
\end{align}$
Now, let us find the marginal revenue. We know that marginal revenue is change in total revenue divided by change in quantity.
$\begin{align}
& \Rightarrow \text{Marginal Revenue}\left( \text{MR} \right)=\dfrac{\text{Change in total revenue}}{\text{Change in quantity}} \\
& \Rightarrow MR=\dfrac{\Delta TR}{\Delta q} \\
\end{align}$
We have to differentiate $TR\left( q \right)$ with respect to q.
$\Rightarrow MR=\dfrac{d}{dq}\left( \dfrac{150q-4{{q}^{3}}-8q}{{{q}^{2}}+2} \right)$
We have to apply the quotient rule which is given by $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$ .
$\Rightarrow MR=\dfrac{\left( {{q}^{2}}+2 \right)\dfrac{d}{dq}\left( 150q-4{{q}^{3}}-8q \right)-\left( 150q-4{{q}^{3}}-8q \right)\dfrac{d}{dq}\left( {{q}^{2}}+2 \right)}{{{\left( {{q}^{2}}+2 \right)}^{2}}}$
We know that $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ . Therefore, the above equation can be written as
$\begin{align}
& \Rightarrow MR=\dfrac{\left( {{q}^{2}}+2 \right)\left( 150-12{{q}^{2}}-8 \right)-\left( 150q-4{{q}^{3}}-8q \right)2q}{{{\left( {{q}^{2}}+2 \right)}^{2}}} \\
& \Rightarrow MR=\dfrac{\left( {{q}^{2}}+2 \right)\left( 142-12{{q}^{2}} \right)-\left( 150q-4{{q}^{3}}-8q \right)2q}{{{\left( {{q}^{2}}+2 \right)}^{2}}} \\
\end{align}$
Let us apply the distributive property.
$\Rightarrow MR=\dfrac{142{{q}^{2}}-12{{q}^{4}}+284-24{{q}^{2}}-300{{q}^{2}}+8{{q}^{4}}+16{{q}^{2}}}{{{\left( {{q}^{2}}+2 \right)}^{2}}}$
We have to add the like terms.
$\Rightarrow MR=\dfrac{-4{{q}^{4}}-166{{q}^{2}}+284}{{{\left( {{q}^{2}}+2 \right)}^{2}}}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ . Therefore, the denominator of the above equation can be written as
$\Rightarrow MR=\dfrac{-4{{q}^{4}}-166{{q}^{2}}+284}{{{q}^{4}}+4{{q}^{2}}+4}$
Let us divide $-4{{q}^{4}}-166{{q}^{2}}+284$ by ${{q}^{4}}+4{{q}^{2}}+4$ .
\[\begin{align}
& {{q}^{4}}+4{{q}^{2}}+4\overset{-4}{\overline{\left){-4{{q}^{4}}-166{{q}^{2}}+284}\right.}} \\
& \text{ }\underline{\begin{align}
& -4{{q}^{4}}-16{{q}^{2}}-16 \\
& \begin{matrix}
\left( + \right) & \left( + \right) & \left( + \right) \\
\end{matrix} \\
\end{align}} \\
& \text{ }-150{{q}^{2}}+300 \\
\end{align}\]
We can write the result in the form $\text{Quotient}+\dfrac{\text{Remainder}}{\text{Divisor}}$ .
$\Rightarrow MR=-4+\dfrac{-150{{q}^{2}}+300}{{{q}^{4}}+4{{q}^{2}}+4}$
Hence, the marginal revenue is $-4+\dfrac{-150{{q}^{2}}+300}{{{q}^{4}}+4{{q}^{2}}+4}$ .
Note: Students must be thorough with the formulas of total revenue and marginal revenue. They have a chance of making a mistake by writing the formula for marginal revenue as the change in quantity divided by total revenue.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

